• 图解redis(二)——持久化篇


    2 持久化篇

    2.1 AOF持久化是怎么实现的

    image-20220930100406190

    2.1.1 AOF日志

    试想一下,如果 Redis 每执行一条写操作命令,就把该命令以追加的方式写入到一个文件里,然后重启 Redis 的时候,先去读取这个文件里的命令,并且执行它,这不就相当于恢复了缓存数据了吗?

    image-20220930100553470

    这种保存写操作命令到日志的持久化方式,就是 Redis 里的 AOF(*Append Only File*) 持久化功能,注意只会记录写操作命令,读操作命令是不会被记录的,因为没意义。

    不知道大家注意到没有,Redis 是先执行写操作命令后,才将该命令记录到 AOF 日志里的,这么做其实有两个好处。

    第一个好处,避免额外的检查开销。

    因为如果先将写操作命令记录到 AOF 日志里,再执行该命令的话,如果当前的命令语法有问题,那么如果不进行命令语法检查,该错误的命令记录到 AOF 日志里后,Redis 在使用日志恢复数据时,就可能会出错。

    而如果先执行写操作命令再记录日志的话,只有在该命令执行成功后,才将命令记录到 AOF 日志里,这样就不用额外的检查开销,保证记录在 AOF 日志里的命令都是可执行并且正确的。

    第二个好处,不会阻塞当前写操作命令的执行,因为当写操作命令执行成功后,才会将命令记录到 AOF 日志。

    当然,AOF 持久化功能也不是没有潜在风险。

    第一个风险,执行写操作命令和记录日志是两个过程,那当 Redis 在还没来得及将命令写入到硬盘时,服务器发生宕机了,这个数据就会有丢失的风险

    第二个风险,前面说道,由于写操作命令执行成功后才记录到 AOF 日志,所以不会阻塞当前写操作命令的执行,但是可能会给「下一个」命令带来阻塞风险

    因为将命令写入到日志的这个操作也是在主进程完成的(执行命令也是在主进程),也就是说这两个操作是同步的。

    2.1.2 三种写回策略

    image-20220930101024103

    Redis 提供了 3 种写回硬盘的策略,控制的就是上面说的第三步的过程。

    redis.conf 配置文件中的 appendfsync 配置项可以有以下 3 种参数可填:

    • Always,这个单词的意思是「总是」,所以它的意思是每次写操作命令执行完后,同步将 AOF 日志数据写回硬盘;
    • Everysec,这个单词的意思是「每秒」,所以它的意思是每次写操作命令执行完后,先将命令写入到 AOF 文件的内核缓冲区,然后每隔一秒将缓冲区里的内容写回到硬盘;
    • No,意味着不由 Redis 控制写回硬盘的时机,转交给操作系统控制写回的时机,也就是每次写操作命令执行完后,先将命令写入到 AOF 文件的内核缓冲区,再由操作系统决定何时将缓冲区内容写回硬盘。

    这 3 种写回策略都无法能完美解决「主进程阻塞」和「减少数据丢失」的问题,因为两个问题是对立的,偏向于一边的话,就会要牺牲另外一边,原因如下:

    • Always 策略的话,可以最大程度保证数据不丢失,但是由于它每执行一条写操作命令就同步将 AOF 内容写回硬盘,所以是不可避免会影响主进程的性能;
    • No 策略的话,是交由操作系统来决定何时将 AOF 日志内容写回硬盘,相比于 Always 策略性能较好,但是操作系统写回硬盘的时机是不可预知的,如果 AOF 日志内容没有写回硬盘,一旦服务器宕机,就会丢失不定数量的数据。
    • Everysec 策略的话,是折中的一种方式,避免了 Always 策略的性能开销,也比 No 策略更能避免数据丢失,当然如果上一秒的写操作命令日志没有写回到硬盘,发生了宕机,这一秒内的数据自然也会丢失。

    大家根据自己的业务场景进行选择:

    • 如果要高性能,就选择 No 策略;
    • 如果要高可靠,就选择 Always 策略;
    • 如果允许数据丢失一点,但又想性能高,就选择 Everysec 策略。

    我也把这 3 个写回策略的优缺点总结成了一张表格:

    image-20220930101303773

    2.1.3 A0F重写机制

    AOF 日志是一个文件,随着执行的写操作命令越来越多,文件的大小会越来越大。

    如果当 AOF 日志文件过大就会带来性能问题,比如重启 Redis 后,需要读 AOF 文件的内容以恢复数据,如果文件过大,整个恢复的过程就会很慢。

    所以,Redis 为了避免 AOF 文件越写越大,提供了 AOF 重写机制,当 AOF 文件的大小超过所设定的阈值后,Redis 就会启用 AOF 重写机制,来压缩 AOF 文件。

    AOF 重写机制是在重写时,读取当前数据库中的所有键值对,然后将每一个键值对用一条命令记录到「新的 AOF 文件」,等到全部记录完后,就将新的 AOF 文件替换掉现有的 AOF 文件。

    举个例子,在没有使用重写机制前,假设前后执行了「set name xiaolin」和「set name xiaolincoding」这两个命令的话,就会将这两个命令记录到 AOF 文件。

    但是在使用重写机制后,就会读取 name 最新的 value(键值对) ,然后用一条 「set name xiaolincoding」命令记录到新的 AOF 文件,之前的第一个命令就没有必要记录了,因为它属于「历史」命令,没有作用了。这样一来,一个键值对在重写日志中只用一条命令就行了。

    重写工作完成后,就会将新的 AOF 文件覆盖现有的 AOF 文件,这就相当于压缩了 AOF 文件,使得 AOF 文件体积变小了。

    然后,在通过 AOF 日志恢复数据时,只用执行这条命令,就可以直接完成这个键值对的写入了。

    所以,重写机制的妙处在于,尽管某个键值对被多条写命令反复修改,最终也只需要根据这个「键值对」当前的最新状态,然后用一条命令去记录键值对,代替之前记录这个键值对的多条命令,这样就减少了 AOF 文件中的命令数量。最后在重写工作完成后,将新的 AOF 文件覆盖现有的 AOF 文件。

    这里说一下为什么重写 AOF 的时候,不直接复用现有的 AOF 文件,而是先写到新的 AOF 文件再覆盖过去。

    因为如果 AOF 重写过程中失败了,现有的 AOF 文件就会造成污染,可能无法用于恢复使用。

    所以 AOF 重写过程,先重写到新的 AOF 文件,重写失败的话,就直接删除这个文件就好,不会对现有的 AOF 文件造成影响。

    2.1.4 AOF后台重写

    写入 AOF 日志的操作虽然是在主进程完成的,因为它写入的内容不多,所以一般不太影响命令的操作。

    但是在触发 AOF 重写时,比如当 AOF 文件大于 64M 时,就会对 AOF 文件进行重写,这时是需要读取所有缓存的键值对数据,并为每个键值对生成一条命令,然后将其写入到新的 AOF 文件,重写完后,就把现在的 AOF 文件替换掉。

    这个过程其实是很耗时的,所以重写的操作不能放在主进程里。

    所以,Redis 的重写 AOF 过程是由后台子进程 *bgrewriteaof* 来完成的,这么做可以达到两个好处:

    • 子进程进行 AOF 重写期间,主进程可以继续处理命令请求,从而避免阻塞主进程;
    • 子进程带有主进程的数据副本(数据副本怎么产生的后面会说),这里使用子进程而不是线程,因为如果是使用线程,多线程之间会共享内存,那么在修改共享内存数据的时候,需要通过加锁来保证数据的安全,而这样就会降低性能。而使用子进程,创建子进程时,父子进程是共享内存数据的,不过这个共享的内存只能以只读的方式,而当父子进程任意一方修改了该共享内存,就会发生「写时复制」,于是父子进程就有了独立的数据副本,就不用加锁来保证数据安全。

    子进程是怎么拥有主进程一样的数据副本的呢?

    主进程在通过 fork 系统调用生成 bgrewriteaof 子进程时,操作系统会把主进程的「页表」复制一份给子进程,这个页表记录着虚拟地址和物理地址映射关系,而不会复制物理内存,也就是说,两者的虚拟空间不同,但其对应的物理空间是同一个。

    image-20220930101633978

    2.1.5 总结

    这次小林给大家介绍了 Redis 持久化技术中的 AOF 方法,这个方法是每执行一条写操作命令,就将该命令以追加的方式写入到 AOF 文件,然后在恢复时,以逐一执行命令的方式来进行数据恢复。

    Redis 提供了三种将 AOF 日志写回硬盘的策略,分别是 Always、Everysec 和 No,这三种策略在可靠性上是从高到低,而在性能上则是从低到高。

    随着执行的命令越多,AOF 文件的体积自然也会越来越大,为了避免日志文件过大, Redis 提供了 AOF 重写机制,它会直接扫描数据中所有的键值对数据,然后为每一个键值对生成一条写操作命令,接着将该命令写入到新的 AOF 文件,重写完成后,就替换掉现有的 AOF 日志。重写的过程是由后台子进程完成的,这样可以使得主进程可以继续正常处理命令。

    用 AOF 日志的方式来恢复数据其实是很慢的,因为 Redis 执行命令由单线程负责的,而 AOF 日志恢复数据的方式是顺序执行日志里的每一条命令,如果 AOF 日志很大,这个「重放」的过程就会很慢了。

    2.2 RDB快照是怎么实现的

    虽说 Redis 是内存数据库,但是它为数据的持久化提供了两个技术。

    分别是「 AOF 日志和 RDB 快照」。

    这两种技术都会用各用一个日志文件来记录信息,但是记录的内容是不同的。

    • AOF 文件的内容是操作命令;
    • RDB 文件的内容是二进制数据。

    关于 AOF 持久化的原理我在上一篇已经介绍了,今天主要讲下 RDB 快照

    所谓的快照,就是记录某一个瞬间东西,比如当我们给风景拍照时,那一个瞬间的画面和信息就记录到了一张照片。

    所以,RDB 快照就是记录某一个瞬间的内存数据,记录的是实际数据,而 AOF 文件记录的是命令操作的日志,而不是实际的数据。

    因此在 Redis 恢复数据时, RDB 恢复数据的效率会比 AOF 高些,因为直接将 RDB 文件读入内存就可以,不需要像 AOF 那样还需要额外执行操作命令的步骤才能恢复数据。

    接下来,就来具体聊聊 RDB 快照 。

    2.2.1 快照怎么用

    要熟悉一个东西,先看看怎么用是比较好的方式。

    Redis 提供了两个命令来生成 RDB 文件,分别是 savebgsave,他们的区别就在于是否在「主线程」里执行:

    • 执行了 save 命令,就会在主线程生成 RDB 文件,由于和执行操作命令在同一个线程,所以如果写入 RDB 文件的时间太长,会阻塞主线程
    • 执行了 bgsave 命令,会创建一个子进程来生成 RDB 文件,这样可以避免主线程的阻塞

    RDB 文件的加载工作是在服务器启动时自动执行的,Redis 并没有提供专门用于加载 RDB 文件的命令。

    Redis 还可以通过配置文件的选项来实现每隔一段时间自动执行一次 bgsave 命令,默认会提供以下配置:

    save 900 1
    save 300 10
    save 60 10000
    

    别看选项名叫 save,实际上执行的是 bgsave 命令,也就是会创建子进程来生成 RDB 快照文件。

    只要满足上面条件的任意一个,就会执行 bgsave,它们的意思分别是:

    • 900 秒之内,对数据库进行了至少 1 次修改;
    • 300 秒之内,对数据库进行了至少 10 次修改;
    • 60 秒之内,对数据库进行了至少 10000 次修改。

    这里提一点,Redis 的快照是全量快照,也就是说每次执行快照,都是把内存中的「所有数据」都记录到磁盘中。

    所以可以认为,执行快照是一个比较重的操作,如果频率太频繁,可能会对 Redis 性能产生影响。如果频率太低,服务器故障时,丢失的数据会更多。

    通常可能设置至少 5 分钟才保存一次快照,这时如果 Redis 出现宕机等情况,则意味着最多可能丢失 5 分钟数据。

    这就是 RDB 快照的缺点,在服务器发生故障时,丢失的数据会比 AOF 持久化的方式更多,因为 RDB 快照是全量快照的方式,因此执行的频率不能太频繁,否则会影响 Redis 性能,而 AOF 日志可以以秒级的方式记录操作命令,所以丢失的数据就相对更少。

    2.2.2 执行快照时,数据能被修改么

    那问题来了,执行 bgsave 过程中,由于是交给子进程来构建 RDB 文件,主线程还是可以继续工作的,此时主线程可以修改数据吗?

    如果不可以修改数据的话,那这样性能一下就降低了很多。如果可以修改数据,又是如何做到到呢?

    直接说结论吧,执行 bgsave 过程中,Redis 依然可以继续处理操作命令的,也就是数据是能被修改的。

    那具体如何做到到呢?关键的技术就在于写时复制技术(Copy-On-Write, COW)。

    执行 bgsave 命令的时候,会通过 fork() 创建子进程,此时子进程和父进程是共享同一片内存数据的,因为创建子进程的时候,会复制父进程的页表,但是页表指向的物理内存还是一个。

    2.2.3 RDB和AOF合体

    尽管 RDB 比 AOF 的数据恢复速度快,但是快照的频率不好把握:

    • 如果频率太低,两次快照间一旦服务器发生宕机,就可能会比较多的数据丢失;
    • 如果频率太高,频繁写入磁盘和创建子进程会带来额外的性能开销。

    那有没有什么方法不仅有 RDB 恢复速度快的优点和,又有 AOF 丢失数据少的优点呢?

    当然有,那就是将 RDB 和 AOF 合体使用,这个方法是在 Redis 4.0 提出的,该方法叫混合使用 AOF 日志和内存快照,也叫混合持久化。

    如果想要开启混合持久化功能,可以在 Redis 配置文件将下面这个配置项设置成 yes:

    aof-use-rdb-preamble yes
    

    混合持久化工作在 AOF 日志重写过程

    当开启了混合持久化时,在 AOF 重写日志时,fork 出来的重写子进程会先将与主线程共享的内存数据以 RDB 方式写入到 AOF 文件,然后主线程处理的操作命令会被记录在重写缓冲区里,重写缓冲区里的增量命令会以 AOF 方式写入到 AOF 文件,写入完成后通知主进程将新的含有 RDB 格式和 AOF 格式的 AOF 文件替换旧的的 AOF 文件。

    也就是说,使用了混合持久化,AOF 文件的前半部分是 RDB 格式的全量数据,后半部分是 AOF 格式的增量数据

    2.3 Redis大key对持久化有什么影响

    2.3.1 大key对AOF日志的影响

    先说说 AOF 日志三种写回磁盘的策略

    Redis 提供了 3 种 AOF 日志写回硬盘的策略,分别是:

    • Always,这个单词的意思是「总是」,所以它的意思是每次写操作命令执行完后,同步将 AOF 日志数据写回硬盘;
    • Everysec,这个单词的意思是「每秒」,所以它的意思是每次写操作命令执行完后,先将命令写入到 AOF 文件的内核缓冲区,然后每隔一秒将缓冲区里的内容写回到硬盘;
    • No,意味着不由 Redis 控制写回硬盘的时机,转交给操作系统控制写回的时机,也就是每次写操作命令执行完后,先将命令写入到 AOF 文件的内核缓冲区,再由操作系统决定何时将缓冲区内容写回硬盘。

    这三种策略只是在控制 fsync() 函数的调用时机。

    当应用程序向文件写入数据时,内核通常先将数据复制到内核缓冲区中,然后排入队列,然后由内核决定何时写入硬盘。

    image-20220930102859885

    如果想要应用程序向文件写入数据后,能立马将数据同步到硬盘,就可以调用 fsync() 函数,这样内核就会将内核缓冲区的数据直接写入到硬盘,等到硬盘写操作完成后,该函数才会返回。

    • Always 策略就是每次写入 AOF 文件数据后,就执行 fsync() 函数;
    • Everysec 策略就会创建一个异步任务来执行 fsync() 函数;
    • No 策略就是永不执行 fsync() 函数;

    分别说说这三种策略,在持久化大 Key 的时候,会影响什么?

    在使用 Always 策略的时候,主线程在执行完命令后,会把数据写入到 AOF 日志文件,然后会调用 fsync() 函数,将内核缓冲区的数据直接写入到硬盘,等到硬盘写操作完成后,该函数才会返回。

    当使用 Always 策略的时候,如果写入是一个大 Key,主线程在执行 fsync() 函数的时候,阻塞的时间会比较久,因为当写入的数据量很大的时候,数据同步到硬盘这个过程是很耗时的

    当使用 Everysec 策略的时候,由于是异步执行 fsync() 函数,所以大 Key 持久化的过程(数据同步磁盘)不会影响主线程。

    当使用 No 策略的时候,由于永不执行 fsync() 函数,所以大 Key 持久化的过程不会影响主线程。

    2.3.2 大key对AOF重写和RDB的影响

    当 AOF 日志写入了很多的大 Key,AOF 日志文件的大小会很大,那么很快就会触发 AOF 重写机制

    AOF 重写机制和 RDB 快照(bgsave 命令)的过程,都会分别通过 fork() 函数创建一个子进程来处理任务。

    在创建子进程的过程中,操作系统会把父进程的「页表」复制一份给子进程,这个页表记录着虚拟地址和物理地址映射关系,而不会复制物理内存,也就是说,两者的虚拟空间不同,但其对应的物理空间是同一个。

    image-20220930103158271

    这样一来,子进程就共享了父进程的物理内存数据了,这样能够节约物理内存资源,页表对应的页表项的属性会标记该物理内存的权限为只读

    随着 Redis 存在越来越多的大 Key,那么 Redis 就会占用很多内存,对应的页表就会越大。

    在通过 fork() 函数创建子进程的时候,虽然不会复制父进程的物理内存,但是内核会把父进程的页表复制一份给子进程,如果页表很大,那么这个复制过程是会很耗时的,那么在执行 fork 函数的时候就会发生阻塞现象

    而且,fork 函数是由 Redis 主线程调用的,如果 fork 函数发生阻塞,那么意味着就会阻塞 Redis 主线程。由于 Redis 执行命令是在主线程处理的,所以当 Redis 主线程发生阻塞,就无法处理后续客户端发来的命令。

    我们可以执行 info 命令获取到 latest_fork_usec 指标,表示 Redis 最近一次 fork 操作耗时。

    如果 fork 耗时很大,比如超过1秒,则需要做出优化调整:

    • 单个实例的内存占用控制在 10 GB 以下,这样 fork 函数就能很快返回。
    • 如果 Redis 只是当作纯缓存使用,不关心 Redis 数据安全性问题,可以考虑关闭 AOF 和 AOF 重写,这样就不会调用 fork 函数了。
    • 在主从架构中,要适当调大 repl-backlog-size,避免因为 repl_backlog_buffer 不够大,导致主节点频繁地使用全量同步的方式,全量同步的时候,是会创建 RDB 文件的,也就是会调用 fork 函数。

    当父进程或者子进程在向共享内存发起写操作时,CPU 就会触发缺页中断,这个缺页中断是由于违反权限导致的,然后操作系统会在「缺页异常处理函数」里进行物理内存的复制,并重新设置其内存映射关系,将父子进程的内存读写权限设置为可读写,最后才会对内存进行写操作,这个过程被称为「写时复制(Copy On Write)」。

    image-20220930103253269

    写时复制顾名思义,在发生写操作的时候,操作系统才会去复制物理内存,这样是为了防止 fork 创建子进程时,由于物理内存数据的复制时间过长而导致父进程长时间阻塞的问题。

    如果创建完子进程后,父进程对共享内存中的大 Key 进行了修改,那么内核就会发生写时复制,会把物理内存复制一份,由于大 Key 占用的物理内存是比较大的,那么在复制物理内存这一过程中,也是比较耗时的,于是父进程(主线程)就会发生阻塞

    所以,有两个阶段会导致阻塞父进程:

    • 创建子进程的途中,由于要复制父进程的页表等数据结构,阻塞的时间跟页表的大小有关,页表越大,阻塞的时间也越长;
    • 创建完子进程后,如果子进程或者父进程修改了共享数据,就会发生写时复制,这期间会拷贝物理内存,如果内存越大,自然阻塞的时间也越长;

    这里额外提一下, 如果 Linux 开启了内存大页,会影响 Redis 的性能的

    Linux 内核从 2.6.38 开始支持内存大页机制,该机制支持 2MB 大小的内存页分配,而常规的内存页分配是按 4KB 的粒度来执行的。

    如果采用了内存大页,那么即使客户端请求只修改 100B 的数据,在发生写时复制后,Redis 也需要拷贝 2MB 的大页。相反,如果是常规内存页机制,只用拷贝 4KB。

    两者相比,你可以看到,每次写命令引起的复制内存页单位放大了 512 倍,会拖慢写操作的执行时间,最终导致 Redis 性能变慢

    那该怎么办呢?很简单,关闭内存大页(默认是关闭的)。

    2.3.3 总结

    当 AOF 写回策略配置了 Always 策略,如果写入是一个大 Key,主线程在执行 fsync() 函数的时候,阻塞的时间会比较久,因为当写入的数据量很大的时候,数据同步到硬盘这个过程是很耗时的。

    AOF 重写机制和 RDB 快照(bgsave 命令)的过程,都会分别通过 fork() 函数创建一个子进程来处理任务。会有两个阶段会导致阻塞父进程(主线程):

    • 创建子进程的途中,由于要复制父进程的页表等数据结构,阻塞的时间跟页表的大小有关,页表越大,阻塞的时间也越长;
    • 创建完子进程后,如果父进程修改了共享数据中的大 Key,就会发生写时复制,这期间会拷贝物理内存,由于大 Key 占用的物理内存会很大,那么在复制物理内存这一过程,就会比较耗时,所以有可能会阻塞父进程。

    大 key 除了会影响持久化之外,还会有以下的影响。

    • 客户端超时阻塞。由于 Redis 执行命令是单线程处理,然后在操作大 key 时会比较耗时,那么就会阻塞 Redis,从客户端这一视角看,就是很久很久都没有响应。
    • 引发网络阻塞。每次获取大 key 产生的网络流量较大,如果一个 key 的大小是 1 MB,每秒访问量为 1000,那么每秒会产生 1000MB 的流量,这对于普通千兆网卡的服务器来说是灾难性的。
    • 阻塞工作线程。如果使用 del 删除大 key 时,会阻塞工作线程,这样就没办法处理后续的命令。
    • 内存分布不均。集群模型在 slot 分片均匀情况下,会出现数据和查询倾斜情况,部分有大 key 的 Redis 节点占用内存多,QPS 也会比较大。

    如何避免大 Key 呢?

    dis 执行命令是单线程处理,然后在操作大 key 时会比较耗时,那么就会阻塞 Redis,从客户端这一视角看,就是很久很久都没有响应。

    • 引发网络阻塞。每次获取大 key 产生的网络流量较大,如果一个 key 的大小是 1 MB,每秒访问量为 1000,那么每秒会产生 1000MB 的流量,这对于普通千兆网卡的服务器来说是灾难性的。
    • 阻塞工作线程。如果使用 del 删除大 key 时,会阻塞工作线程,这样就没办法处理后续的命令。
    • 内存分布不均。集群模型在 slot 分片均匀情况下,会出现数据和查询倾斜情况,部分有大 key 的 Redis 节点占用内存多,QPS 也会比较大。

    如何避免大 Key 呢?

    最好在设计阶段,就把大 key 拆分成一个一个小 key。或者,定时检查 Redis 是否存在大 key ,如果该大 key 是可以删除的,不要使用 DEL 命令删除,因为该命令删除过程会阻塞主线程,而是用 unlink 命令(Redis 4.0+)删除大 key,因为该命令的删除过程是异步的,不会阻塞主线程。

  • 相关阅读:
    mysql数据库开放对外访问
    二手物品交易管理系统
    Java 核心技术卷 I —— 第1章 Java 程序设计概述
    合并果子(C++)[堆]
    基于文化算法优化的神经网络预测研究(Matlab代码实现)
    如何写出同事看不懂的Java代码?
    使用 Android Studio 给 Unity 打包 .SO 文件 (图文详细教程)
    RK3399 Android7.1电脑端adb devices检测不到设备
    数据结构(栈和队列)
    ElasticSearch与Lucene是什么关系?Lucene又是什么?
  • 原文地址:https://blog.csdn.net/qq_41945053/article/details/127119634