本专栏是《自动控制原理》(胡寿松)第七版课后习题精选。
设
f
(
t
)
f(t)
f(t)为时间
t
t
t的函数,且当
t
<
0
t<0
t<0时,
f
(
t
)
=
0
f(t)=0
f(t)=0,则
f
(
t
)
f(t)
f(t)的拉普拉斯变换定义为:
F
(
s
)
=
L
[
f
(
t
)
]
=
∫
0
∞
f
(
t
)
e
−
s
t
d
t
(1)
F(s)=L[f(t)]=\int_0^{\infty}f(t){\rm e}^{-st}{\rm d}t\tag{1}
F(s)=L[f(t)]=∫0∞f(t)e−stdt(1)
拉普拉斯反变换:
f
(
t
)
=
L
−
1
[
F
(
s
)
]
=
1
2
π
j
∫
c
−
j
∞
c
+
j
∞
F
(
s
)
e
s
t
d
s
f(t)=L^{-1}[F(s)]=\frac{1}{2\pi{\rm j}}\int_{c-{\rm j}\infty}^{c+{\rm j}\infty}F(s){\rm e}^{st}{\rm d}s
f(t)=L−1[F(s)]=2πj1∫c−j∞c+j∞F(s)estds
其中:收敛横坐标
c
c
c为实常量,其实部应大于
F
(
s
)
F(s)
F(s)所有奇点的实部;
拉普拉斯变换的存在性
指数函数
f
(
t
)
=
{
0
,
t
<
0
A
e
−
α
t
,
t
≥
0
,
其中:
A
和
α
为常数;
(2)
f(t)=
指数函数拉普拉斯变换为:
F
(
s
)
=
∫
0
∞
A
e
−
α
t
e
−
s
t
d
t
=
A
s
+
α
(3)
F(s)=\int_{0}^{\infty}A{\rm e}^{-\alpha{t}}{\rm e}^{-st}{\rm d}t=\frac{A}{s+\alpha}\tag{3}
F(s)=∫0∞Ae−αte−stdt=s+αA(3)
阶跃函数
f
(
t
)
=
{
0
,
t
<
0
A
,
t
>
0
,其中:
A
为常数,
A
=
1
(
t
)
时为单位阶跃函数
(4)
f(t)=
阶跃函数拉普拉斯变换为:
F
(
s
)
=
∫
0
∞
A
e
−
s
t
d
t
=
A
s
(5)
F(s)=\int_{0}^{\infty}A{\rm e}^{-st}{\rm d}t=\frac{A}{s}\tag{5}
F(s)=∫0∞Ae−stdt=sA(5)
斜坡函数
f
(
t
)
=
{
0
,
t
<
0
A
t
,
t
≥
0
,其中:
A
为常数;
(6)
f(t)=
斜坡函数拉普拉斯变换为:
F
(
s
)
=
∫
0
∞
A
t
e
−
s
t
d
t
=
A
s
2
(7)
F(s)=\int_{0}^{\infty}At{\rm e}^{-st}{\rm d}t=\frac{A}{s^2}\tag{7}
F(s)=∫0∞Ate−stdt=s2A(7)
正弦函数
f
(
t
)
=
{
0
,
t
<
0
A
sin
ω
t
,
t
≥
0
,其中:
A
和
ω
为常数;
(8)
f(t)=
正弦函数拉普拉斯变换为:
F
(
s
)
=
A
2
j
∫
0
∞
(
e
j
ω
t
−
e
−
j
ω
t
)
e
−
s
t
d
t
=
A
ω
s
2
+
ω
2
(9)
F(s)=\frac{A}{2{\rm j}}\int_0^{\infty}({\rm e}^{{\rm j}\omega{t}}-{\rm e}^{-{\rm j}\omega{t}}){\rm e}^{-st}{\rm d}t=\frac{A\omega}{s^2+\omega^2}\tag{9}
F(s)=2jA∫0∞(ejωt−e−jωt)e−stdt=s2+ω2Aω(9)
余弦函数拉普拉斯变换为:
F
(
s
)
=
L
[
A
cos
ω
t
]
=
A
s
s
2
+
ω
2
(10)
F(s)=L[A\cos\omega{t}]=\frac{As}{s^2+\omega^2}\tag{10}
F(s)=L[Acosωt]=s2+ω2As(10)
平移函数
设函数为
f
(
t
)
f(t)
f(t),当
t
<
0
t<0
t<0时,
f
(
t
)
=
0
f(t)=0
f(t)=0;平移函数为
f
(
t
−
α
)
1
(
t
−
α
)
f(t-\alpha)1(t-\alpha)
f(t−α)1(t−α),其中:
α
≥
0
\alpha≥0
α≥0且
t
<
α
t<\alpha
t<α时,
f
(
t
−
α
)
1
(
t
−
α
)
=
0
f(t-\alpha)1(t-\alpha)=0
f(t−α)1(t−α)=0,则平移函数的拉普拉斯变换为:
L
[
f
(
t
−
α
)
1
(
t
−
α
)
]
=
∫
0
∞
f
(
t
−
α
)
1
(
t
−
α
)
e
−
s
t
d
t
=
e
−
α
s
F
(
s
)
,
α
≥
0
(11)
L[f(t-\alpha)1(t-\alpha)]=\int_{0}^{\infty}f(t-\alpha)1(t-\alpha){\rm e}^{-st}{\rm d}t={\rm e}^{-\alpha{s}}F(s)\tag{11},\alpha≥0
L[f(t−α)1(t−α)]=∫0∞f(t−α)1(t−α)e−stdt=e−αsF(s),α≥0(11)
脉动函数
f
(
t
)
=
{
A
t
0
,
0
<
t
<
t
0
0
,
t
<
0
,
t
0
<
t
,其中:
A
和
t
0
为常数;
(12)
f(t)=
脉动函数拉普拉斯变换为:
F
(
s
)
=
L
[
A
t
0
1
(
t
)
]
−
L
[
A
t
0
1
(
t
−
t
0
)
]
=
A
t
0
s
(
1
−
e
−
s
t
0
)
(13)
F(s)=L\left[\frac{A}{t_0}1(t)\right]-L\left[\frac{A}{t_0}1(t-t_0)\right]=\frac{A}{t_0s}(1-{\rm e}^{-st_0})\tag{13}
F(s)=L[t0A1(t)]−L[t0A1(t−t0)]=t0sA(1−e−st0)(13)
脉冲函数
g
(
t
)
=
{
lim
t
0
→
0
A
t
0
,
0
<
t
<
t
0
0
,
t
<
0
,
t
0
<
t
(14)
g(t)=
脉冲函数拉普拉斯变换为:
L
[
g
(
t
)
]
=
lim
t
0
→
0
A
s
s
=
A
(15)
L[g(t)]=\lim_{t_0\rightarrow0}\frac{As}{s}=A\tag{15}
L[g(t)]=t0→0limsAs=A(15)
f
(
t
)
f(t)
f(t)与
e
−
α
t
{\rm e}^{-\alpha{t}}
e−αt相乘
L
[
e
−
α
t
f
(
t
)
]
=
F
(
s
+
α
)
(16)
L[{\rm e}^{-\alpha{t}}f(t)]=F(s+\alpha)\tag{16}
L[e−αtf(t)]=F(s+α)(16)
L [ e − α t sin ω t ] = F ( s + α ) = ω ( s + α ) 2 + ω 2 (17) L[{\rm e}^{-\alpha{t}}\sin\omega{t}]=F(s+\alpha)=\frac{\omega}{(s+\alpha)^2+\omega^2}\tag{17} L[e−αtsinωt]=F(s+α)=(s+α)2+ω2ω(17)
L [ e − α t cos ω t ] = G ( s + α ) = s + α ( s + α ) 2 + ω 2 (18) L[{\rm e}^{-\alpha{t}}\cos\omega{t}]=G(s+\alpha)=\frac{s+\alpha}{(s+\alpha)^2+\omega^2}\tag{18} L[e−αtcosωt]=G(s+α)=(s+α)2+ω2s+α(18)
时间比例尺
设函数
f
(
t
)
f(t)
f(t)的拉普拉斯变换为
F
(
s
)
F(s)
F(s),改变时间比例尺的函数为
f
(
t
/
α
)
f(t/\alpha)
f(t/α),其中
α
\alpha
α为正常数,则
f
(
t
/
α
)
f(t/\alpha)
f(t/α)的拉普拉斯变换为:
L
[
f
(
t
/
α
)
]
=
α
F
(
α
s
)
(19)
L[f(t/\alpha)]=\alpha{F}(\alpha{s})\tag{19}
L[f(t/α)]=αF(αs)(19)
序号 | 原函数 | 拉普拉斯变换 |
---|---|---|
1 | δ ( t ) \delta(t) δ(t) | 1 1 1 |
2 | 1 ( t ) 1(t) 1(t) | 1 s \displaystyle\frac{1}{s} s1 |
3 | t t t | 1 s 2 \displaystyle\frac{1}{s^2} s21 |
4 | t n − 1 ( n − 1 ) ! \displaystyle\frac{t^{n-1}}{(n-1)!} (n−1)!tn−1 | 1 s n \displaystyle\frac{1}{s^{n}} sn1 |
5 | e − a t {\rm e}^{-at} e−at | 1 s + a \displaystyle\frac{1}{s+a} s+a1 |
6 | sin ω t \sin\omega{t} sinωt | ω s 2 + ω 2 \displaystyle\frac{\omega}{s^2+\omega^2} s2+ω2ω |
7 | cos ω t \cos\omega{t} cosωt | s s 2 + ω 2 \displaystyle\frac{s}{s^2+\omega^2} s2+ω2s |
8 | e − a t sin ω t {\rm e}^{-at}\sin\omega{t} e−atsinωt | ω ( s + a ) 2 + ω 2 \displaystyle\frac{\omega}{(s+a)^2+\omega^2} (s+a)2+ω2ω |
9 | e − a t cos ω t {\rm e}^{-at}\cos\omega{t} e−atcosωt | s + a ( s + a ) 2 + ω 2 \displaystyle\frac{s+a}{(s+a)^2+\omega^2} (s+a)2+ω2s+a |
10 | 1 ( n − 1 ) ! t n − 1 e − a t \displaystyle\frac{1}{(n-1)!}t^{n-1}{\rm e}^{-at} (n−1)!1tn−1e−at | 1 ( s + a ) n \displaystyle\frac{1}{(s+a)^n} (s+a)n1 |
11 | 1 a ( 1 − e − a t ) \displaystyle\frac{1}{a}(1-{\rm e}^{-at}) a1(1−e−at) | 1 s ( s + a ) \displaystyle\frac{1}{s(s+a)} s(s+a)1 |
12 | ω n 1 − ζ 2 e − ζ ω n t sin ( ω n 1 − ζ 2 t ) \displaystyle\frac{\omega_n}{\sqrt{1-\zeta^2}}{\rm e}^{-\zeta\omega_nt}\sin(\omega_n\sqrt{1-\zeta^2}t) 1−ζ2ωne−ζωntsin(ωn1−ζ2t) | ω n 2 s 2 + 2 ζ ω n s + ω n 2 \displaystyle\frac{\omega_n^2}{s^2+2\zeta\omega_ns+\omega_n^2} s2+2ζωns+ωn2ωn2 |
13 | 1 − 1 1 − ζ 2 e − ζ ω n t sin ( ω n 1 − ζ 2 t + φ ) , φ = arctan ( 1 − ζ 2 / ζ ) 1-\displaystyle\frac{1}{\sqrt{1-\zeta^2}}{\rm e}^{-\zeta\omega_nt}\sin(\omega_n\sqrt{1-\zeta^2}t+\varphi),\varphi=\arctan(\sqrt{1-\zeta^2}/\zeta) 1−1−ζ21e−ζωntsin(ωn1−ζ2t+φ),φ=arctan(1−ζ2/ζ) | ω n 2 s ( s 2 + 2 ζ ω n s + ω n 2 ) \displaystyle\frac{\omega_n^2}{s(s^2+2\zeta\omega_ns+\omega_n^2)} s(s2+2ζωns+ωn2)ωn2 |
实微分定理
设
F
(
s
)
=
L
[
f
(
t
)
]
F(s)=L[f(t)]
F(s)=L[f(t)],则应用分部积分求拉普拉斯变换积分,有:
L
[
d
d
t
f
(
t
)
]
=
s
F
(
s
)
−
f
(
0
)
(20)
L\left[\frac{{\rm d}}{{\rm d}t}f(t)\right]=sF(s)-f(0)\tag{20}
L[dtdf(t)]=sF(s)−f(0)(20)
同理:
L
[
d
2
d
t
2
f
(
t
)
]
=
s
2
F
(
s
)
−
s
f
(
0
)
−
f
˙
(
0
)
(21)
L\left[\frac{{\rm d}^2}{{\rm d}t^2}f(t)\right]=s^2F(s)-sf(0)-\dot{f}(0)\tag{21}
L[dt2d2f(t)]=s2F(s)−sf(0)−f˙(0)(21)
L [ d n d t n f ( t ) ] = s n F ( s ) − s n − 1 f ( 0 ) − s n − 2 f ˙ ( 0 ) − ⋯ − f ( n − 1 ) ( 0 ) (22) L\left[\frac{{\rm d}^n}{{\rm d}t^n}f(t)\right]=s^nF(s)-s^{n-1}f(0)-s^{n-2}\dot{f}(0)-\dots-f^{(n-1)}(0)\tag{22} L[dtndnf(t)]=snF(s)−sn−1f(0)−sn−2f˙(0)−⋯−f(n−1)(0)(22)
终值定理
如果函数
f
(
t
)
f(t)
f(t)和
d
f
(
t
)
/
d
t
{\rm d}f(t)/{\rm d}t
df(t)/dt是拉普拉斯变换的,象函数
F
(
s
)
F(s)
F(s)是
f
(
t
)
f(t)
f(t)的拉普拉斯变换,且极限
lim
t
→
∞
f
(
t
)
\displaystyle\lim_{t\rightarrow\infty}f(t)
t→∞limf(t)存在,则有:
lim
t
→
∞
f
(
t
)
=
lim
s
→
0
s
F
(
s
)
(23)
\lim_{t\rightarrow\infty}f(t)=\lim_{s\rightarrow0}sF(s)\tag{23}
t→∞limf(t)=s→0limsF(s)(23)
注意:当且仅当
lim
t
→
∞
f
(
t
)
\displaystyle\lim_{{t\rightarrow}\infty}{f(t)}
t→∞limf(t)存在,才能应用终值定理,即当
t
→
∞
t\rightarrow\infty
t→∞时,
f
(
t
)
f(t)
f(t)将稳定到确定值;如果
s
F
(
s
)
sF(s)
sF(s)的所有极点均位于左半
s
s
s平面,则
lim
t
→
∞
f
(
t
)
\displaystyle\lim_{t\rightarrow\infty}f(t)
t→∞limf(t)存在;如果
s
F
(
s
)
sF(s)
sF(s)有极点位于虚轴或位于右半
s
s
s平面,
f
(
t
)
f(t)
f(t)将分别包含振荡的或按指数规律增长的时间函数分量,因而
lim
t
→
∞
f
(
t
)
\displaystyle\lim_{t\rightarrow\infty}f(t)
t→∞limf(t)将不存在;如果
f
(
t
)
f(t)
f(t)是正弦函数
sin
ω
t
\sin\omega{t}
sinωt,则
s
F
(
s
)
sF(s)
sF(s)将有位于虚轴上的极点
s
=
±
j
ω
s=±{\rm j}\omega
s=±jω,因此
lim
t
→
∞
f
(
t
)
\displaystyle\lim_{t\rightarrow\infty}f(t)
t→∞limf(t)不存在,终值定理不适用此类函数;
初值定理
如果函数
f
(
t
)
f(t)
f(t)和
d
f
(
t
)
/
d
t
{\rm d}f(t)/{\rm d}t
df(t)/dt均可拉普拉斯变换,且
lim
s
→
∞
s
F
(
s
)
\displaystyle\lim_{s\rightarrow\infty}sF(s)
s→∞limsF(s)存在,则有:
f
(
0
+
)
=
lim
s
→
∞
s
F
(
s
)
(24)
f(0_{+})=\lim_{s\rightarrow\infty}sF(s)\tag{24}
f(0+)=s→∞limsF(s)(24)
应用初值定理时,对
s
F
(
s
)
sF(s)
sF(s)的极点位置没有限制;
复微分定理
若函数
f
(
t
)
f(t)
f(t)可拉普拉斯变换,则除了在
F
(
s
)
F(s)
F(s)的极点外,有:
L
[
t
f
(
t
)
]
=
−
d
d
s
F
(
s
)
(25)
L[tf(t)]=-\frac{{\rm d}}{{\rm d}s}F(s)\tag{25}
L[tf(t)]=−dsdF(s)(25)
L [ t n f ( t ) ] = ( − 1 ) n d n d s n F ( s ) , n = 1 , 2 , 3 , … , (26) L[t^nf(t)]=(-1)^n\frac{{\rm d}^n}{{\rm d}s^n}F(s),n=1,2,3,\dots,\tag{26} L[tnf(t)]=(−1)ndsndnF(s),n=1,2,3,…,(26)
卷积定理
考虑卷积函数:
f
1
(
t
)
∗
f
2
(
t
)
=
∫
0
t
f
1
(
t
−
τ
)
f
2
(
τ
)
d
τ
(27)
f_1(t)*f_2(t)=\int_0^tf_1(t-\tau)f_2(\tau){\rm d}\tau\tag{27}
f1(t)∗f2(t)=∫0tf1(t−τ)f2(τ)dτ(27)
F 1 ( s ) = L [ f 1 ( t ) ] = ∫ 0 ∞ f 1 ( t ) e − s t d t , F 2 ( s ) = L [ f 2 ( t ) ] = ∫ 0 ∞ f 2 ( t ) e − s t d t (28) F_1(s)=L[f_1(t)]=\int_0^{\infty}f_1(t){\rm e}^{-st}{\rm d}t,F_2(s)=L[f_2(t)]=\int_0^{\infty}f_2(t){\rm e}^{-st}{\rm d}t\tag{28} F1(s)=L[f1(t)]=∫0∞f1(t)e−stdt,F2(s)=L[f2(t)]=∫0∞f2(t)e−stdt(28)
L [ f 1 ( t ) ∗ f 2 ( t ) ] = L [ f 1 ( t ) ] L [ f 2 ( t ) ] = F 1 ( s ) F 2 ( s ) (29) L[f_1(t)*f_2(t)]=L[f_1(t)]L[f_2(t)]=F_1(s)F_2(s)\tag{29} L[f1(t)∗f2(t)]=L[f1(t)]L[f2(t)]=F1(s)F2(s)(29)
序号 | 基本运算 | f ( t ) f(t) f(t) | F ( s ) F(s) F(s) |
---|---|---|---|
1 | 拉普拉斯变换定义 | f ( t ) f(t) f(t) | F ( s ) = ∫ 0 ∞ f ( t ) e − s t d t F(s)=\displaystyle\int_0^{\infty}f(t){\rm e}^{-st}{\rm d}t F(s)=∫0∞f(t)e−stdt |
2 | 位移(时间域) | f ( t − τ 0 ) 1 ( t − τ 0 ) f(t-\tau_0)1(t-\tau_0) f(t−τ0)1(t−τ0) | e − τ 0 s F ( s ) , τ 0 > 0 {\rm e}^{-{\tau}_0s}F(s),\tau_0>0 e−τ0sF(s),τ0>0 |
3 | 相似性 | f ( a t ) f(at) f(at) | 1 a F ( s a ) , a > 0 \displaystyle\frac{1}{a}F(\displaystyle\frac{s}{a}),a>0 a1F(as),a>0 |
4 | 一阶导数 | d f ( t ) d t \displaystyle\frac{{\rm d}f(t)}{{\rm d}t} dtdf(t) | s F ( s ) − f ( 0 ) sF(s)-f(0) sF(s)−f(0) |
5 | n n n阶导数 | d n f ( t ) d t n \displaystyle\frac{{\rm d}^nf(t)}{{\rm d}t^n} dtndnf(t) | s n F ( s ) − s n − 1 f ( 0 ) − s n − 2 f ˙ ( 0 ) − ⋯ − f ( n − 1 ) ( 0 ) s^nF(s)-s^{n-1}f(0)-s^{n-2}\dot{f}(0)-\dots-f^{(n-1)}(0) snF(s)−sn−1f(0)−sn−2f˙(0)−⋯−f(n−1)(0) |
6 | 不定积分 | ∫ f ( t ) d t \displaystyle\int{f(t)}{\rm d}t ∫f(t)dt | 1 s [ F ( s ) + f − 1 ( 0 ) ] \displaystyle\frac{1}{s}[F(s)+f^{-1}(0)] s1[F(s)+f−1(0)] |
7 | 定积分 | ∫ 0 t f ( t ) d t \displaystyle\int_0^tf(t){\rm d}t ∫0tf(t)dt | 1 s F ( s ) \displaystyle\frac{1}{s}F(s) s1F(s) |
8 | 函数乘以 t t t | t f ( t ) tf(t) tf(t) | − d d s F ( s ) -\displaystyle\frac{{\rm d}}{{\rm d}s}F(s) −dsdF(s) |
9 | 函数除以 t t t | 1 t f ( t ) \displaystyle\frac{1}{t}f(t) t1f(t) | ∫ t ∞ F ( s ) d s \displaystyle\int_t^{\infty}F(s){\rm d}s ∫t∞F(s)ds |
10 | 位移(s域) | e − a t f ( t ) {\rm e}^{-at}f(t) e−atf(t) | F ( s + a ) F(s+a) F(s+a) |
11 | 初始值 | lim t → 0 + f ( t ) \displaystyle\lim_{t\rightarrow0_{+}}f(t) t→0+limf(t) | lim s → ∞ s F ( s ) \displaystyle\lim_{s\rightarrow\infty}sF(s) s→∞limsF(s) |
12 | 终值 | lim t → ∞ f ( t ) \displaystyle\lim_{t\rightarrow\infty}f(t) t→∞limf(t) | lim s → 0 s F ( s ) \displaystyle\lim_{s\rightarrow0}sF(s) s→0limsF(s) |
13 | 卷积 | f 1 ( t ) ∗ f 2 ( t ) = ∫ 0 t f 1 ( τ ) f 2 ( t − τ ) d τ f_1(t)*f_2(t)=\displaystyle\int_{0}^tf_1(\tau)f_2(t-\tau){\rm d}\tau f1(t)∗f2(t)=∫0tf1(τ)f2(t−τ)dτ | F 1 ( s ) F 2 ( s ) F_1(s)F_2(s) F1(s)F2(s) |
一般,象函数
F
(
s
)
F(s)
F(s)是复变量
s
s
s的有理代数分式,可以表示为:
F
(
s
)
=
B
(
s
)
A
(
s
)
=
b
0
s
m
+
b
1
s
m
−
1
+
⋯
+
b
m
−
1
s
+
b
m
s
n
+
a
1
s
n
−
1
+
⋯
+
a
n
−
1
s
+
a
n
(30)
F(s)=\frac{B(s)}{A(s)}=\frac{b_0s^m+b_1s^{m-1}+\dots+b_{m-1}s+b_m}{s^n+a_1s^{n-1}+\dots+a_{n-1}s+a_n}\tag{30}
F(s)=A(s)B(s)=sn+a1sn−1+⋯+an−1s+anb0sm+b1sm−1+⋯+bm−1s+bm(30)
其中:系数
a
1
,
a
2
,
…
,
a
n
a_1,a_2,\dots,a_n
a1,a2,…,an和
b
0
,
b
1
,
b
2
,
…
,
b
m
b_0,b_1,b_2,\dots,b_m
b0,b1,b2,…,bm都是实常数;
m
m
m和
n
n
n为正整数,通常
m
<
n
m
把
F
(
s
)
F(s)
F(s)展成部分分式,对
A
(
s
)
A(s)
A(s)进行因式分解:
F
(
s
)
=
B
(
s
)
A
(
s
)
=
b
0
s
m
+
b
1
s
m
−
1
+
⋯
+
b
m
−
1
s
+
b
m
(
s
−
s
1
)
(
s
−
s
2
)
…
(
s
−
s
n
)
(31)
F(s)=\frac{B(s)}{A(s)}=\frac{b_0s^m+b_1s^{m-1}+\dots+b_{m-1}s+b_m}{(s-s_1)(s-s_2)\dots(s-s_n)}\tag{31}
F(s)=A(s)B(s)=(s−s1)(s−s2)…(s−sn)b0sm+b1sm−1+⋯+bm−1s+bm(31)
其中:
s
i
(
i
=
1
,
2
,
…
,
n
)
s_i(i=1,2,\dots,n)
si(i=1,2,…,n)称为
F
(
s
)
F(s)
F(s)的极点;
F
(
s
)
F(s)
F(s)无重极点
F
(
s
)
=
∑
i
=
1
n
c
i
s
−
s
i
(32)
F(s)=\sum_{i=1}^n\frac{c_i}{s-s_i}\tag{32}
F(s)=i=1∑ns−sici(32)
其中:
c
i
c_i
ci为待定常数,称为
F
(
s
)
F(s)
F(s)在极点
s
i
s_i
si处的留数,计算方式:
c
i
=
lim
s
→
s
i
(
s
−
s
i
)
F
(
s
)
(33)
c_i=\lim_{s\rightarrow{s_i}}(s-s_i)F(s)\tag{33}
ci=s→silim(s−si)F(s)(33)
求得:
f
(
t
)
=
L
−
1
[
F
(
s
)
]
=
∑
i
=
1
n
c
i
e
s
i
t
(34)
f(t)=L^{-1}[F(s)]=\sum_{i=1}^nc_i{\rm e}^{s_it}\tag{34}
f(t)=L−1[F(s)]=i=1∑nciesit(34)
即:有理代数分式函数的拉普拉斯反变换,可表示为若干指数项之和;
F ( s ) F(s) F(s)有多重极点
设
A
(
s
)
=
0
A(s)=0
A(s)=0有
r
r
r个重根
s
1
s_1
s1,则
F
(
s
)
F(s)
F(s)可写为:
F
(
s
)
=
B
(
s
)
(
s
−
s
1
)
r
(
s
−
s
r
+
1
)
…
(
s
−
s
n
)
=
c
r
(
s
−
s
1
)
r
+
c
r
−
1
(
s
−
s
1
)
r
−
1
+
⋯
+
c
1
s
−
s
1
+
c
r
+
1
s
−
s
r
+
1
+
⋯
+
c
n
s
−
s
n
(35)
其中:待定常数
c
r
+
1
,
…
,
c
n
c_{r+1},\dots,c_n
cr+1,…,cn按
F
(
s
)
F(s)
F(s)无重极点时留数计算;
c
i
=
lim
s
→
s
i
(
s
−
s
i
)
F
(
s
)
;
i
=
r
+
1
,
r
+
2
,
…
,
n
(36)
c_i=\lim_{s\rightarrow{s_i}}(s-s_i)F(s);i=r+1,r+2,\dots,n\tag{36}
ci=s→silim(s−si)F(s);i=r+1,r+2,…,n(36)
重极点对应的待定常数
c
r
,
c
r
−
1
,
…
,
c
1
c_r,c_{r-1},\dots,c_1
cr,cr−1,…,c1,按照下式确定:
{
c
r
=
lim
s
→
s
1
(
s
−
s
1
)
r
F
(
s
)
c
r
−
1
=
lim
s
→
s
1
d
d
s
[
(
s
−
s
1
)
r
F
(
s
)
]
⋮
c
r
−
j
=
1
j
!
lim
s
→
s
1
d
(
j
)
d
s
j
[
(
s
−
s
1
)
r
F
(
s
)
]
⋮
c
1
=
1
(
r
−
1
)
!
lim
s
→
s
1
d
(
r
−
1
)
d
s
r
−
1
[
(
s
−
s
1
)
r
F
(
s
)
]
(37)
原函数为:
f
(
t
)
=
L
−
1
[
F
(
s
)
]
=
[
c
r
(
r
−
1
)
!
t
r
−
1
+
c
r
−
1
(
r
−
2
)
!
t
r
−
2
+
⋯
+
c
2
t
+
c
1
]
e
s
1
t
+
∑
i
=
r
+
1
n
c
i
e
s
i
t
(38)
f(t)=L^{-1}[F(s)]=[\frac{c_r}{(r-1)!}t^{r-1}+\frac{c_{r-1}}{(r-2)!}t^{r-2}+\dots+c_2t+c_1]{\rm e}^{s_1t}+\sum_{i=r+1}^nc_i{\rm e}^{s_it}\tag{38}
f(t)=L−1[F(s)]=[(r−1)!crtr−1+(r−2)!cr−1tr−2+⋯+c2t+c1]es1t+i=r+1∑nciesit(38)