function包装器
function是一种函数包装器,也叫做适配器。它可以对可调用对象进行包装,C++中的function本质就是一个类模板。
function类模板的原型如下:
template <class T> function; // undefined
template <class Ret, class... Args>
class function<Ret(Args...)>;
模板参数说明:
Ret
:被包装的可调用对象的返回值类型。Args...
:被包装的可调用对象的形参类型。包装示例
function包装器可以对可调用对象进行包装,包括函数指针(函数名)、仿函数(函数对象)、lambda表达式、类的成员函数。比如:
int f(int a, int b)
{
return a + b;
}
struct Functor
{
public:
int operator()(int a, int b)
{
return a + b;
}
};
class Plus
{
public:
static int plusi(int a, int b)
{
return a + b;
}
double plusd(double a, double b)
{
return a + b;
}
};
int main()
{
//1、包装函数指针(函数名)
function<int(int, int)> func1 = f;
cout << func1(1, 2) << endl;
//2、包装仿函数(函数对象)
function<int(int, int)> func2 = Functor();
cout << func2(1, 2) << endl;
//3、包装lambda表达式
function<int(int, int)> func3 = [](int a, int b){return a + b; };
cout << func3(1, 2) << endl;
//4、类的静态成员函数
//function func4 = Plus::plusi;
function<int(int, int)> func4 = &Plus::plusi; //&可省略
cout << func4(1, 2) << endl;
//5、类的非静态成员函数
function<double(Plus, double, double)> func5 = &Plus::plusd; //&不可省略
cout << func5(Plus(), 1.1, 2.2) << endl;
return 0;
}
注意事项:
对于以下函数模板useF:
代码如下:
template<class F, class T>
T useF(F f, T x)
{
static int count = 0;
cout << "count: " << ++count << endl;
cout << "count: " << &count << endl;
return f(x);
}
在传入第二个参数类型相同的情况下,如果传入的可调用对象的类型是不同的,那么在编译阶段该函数模板就会被实例化多次。比如:
double f(double i)
{
return i / 2;
}
struct Functor
{
double operator()(double d)
{
return d / 3;
}
};
int main()
{
//函数指针
cout << useF(f, 11.11) << endl;
//仿函数
cout << useF(Functor(), 11.11) << endl;
//lambda表达式
cout << useF([](double d)->double{return d / 4; }, 11.11) << endl;
return 0;
}
由于函数指针、仿函数、lambda表达式是不同的类型,因此useF函数会被实例化出三份,三次调用useF函数所打印count的地址也是不同的。
代码如下:
int main()
{
//函数名
function<double(double)> func1 = func;
cout << useF(func1, 11.11) << endl;
//函数对象
function<double(double)> func2 = Functor();
cout << useF(func2, 11.11) << endl;
//lambda表达式
function<double(double)> func3 = [](double d)->double{return d / 4; };
cout << useF(func3, 11.11) << endl;
return 0;
}
这时三次调用useF函数所打印count的地址就是相同的,并且count在三次调用后会被累加到3,表示这一个useF函数被调用了三次。
求解逆波兰表达式的步骤如下:
代码如下:
class Solution {
public:
int evalRPN(vector<string>& tokens) {
stack<int> st;
for (const auto& str : tokens)
{
int left, right;
if (str == "+" || str == "-" || str == "*" || str == "/")
{
right = st.top();
st.pop();
left = st.top();
st.pop();
switch (str[0])
{
case '+':
st.push(left + right);
break;
case '-':
st.push(left - right);
break;
case '*':
st.push(left * right);
break;
case '/':
st.push(left / right);
break;
default:
break;
}
}
else
{
st.push(stoi(str));
}
}
return st.top();
}
};
在上述代码中,我们通过switch语句来判断本次需要进行哪种运算,如果运算类型增加了,比如增加了求余、幂、对数等运算,那么就需要在switch语句的后面中继续增加case语句。
这种情况可以用包装器来简化代码。
代码如下:
class Solution {
public:
int evalRPN(vector<string>& tokens) {
stack<int> st;
unordered_map<string, function<int(int, int)>> opMap = {
{ "+", [](int a, int b){return a + b; } },
{ "-", [](int a, int b){return a - b; } },
{ "*", [](int a, int b){return a * b; } },
{ "/", [](int a, int b){return a / b; } }
};
for (const auto& str : tokens)
{
int left, right;
if (str == "+" || str == "-" || str == "*" || str == "/")
{
right = st.top();
st.pop();
left = st.top();
st.pop();
st.push(opMap[str](left, right));
}
else
{
st.push(stoi(str));
}
}
return st.top();
}
};
需要注意的是,这里建立的是运算符与function类型之间的映射关系,因此无论是函数指针、仿函数还是lambda表达式都可以在包装后与对应的运算符进行绑定。
bind包装器
bind也是一种函数包装器,也叫做适配器。它可以接受一个可调用对象,生成一个新的可调用对象来“适应”原对象的参数列表,C++中的bind本质是一个函数模板。
bind函数模板的原型如下:
template <class Fn, class... Args>
/* unspecified */ bind(Fn&& fn, Args&&... args);
template <class Ret, class Fn, class... Args>
/* unspecified */ bind(Fn&& fn, Args&&... args);
模板参数说明:
fn
:可调用对象。args...
:要绑定的参数列表:值或占位符。调用bind的一般形式
调用bind的一般形式为:auto newCallable = bind(callable, arg_list);
解释说明:
callable
:需要包装的可调用对象。newCallable
:生成的新的可调用对象。arg_list
:逗号分隔的参数列表,对应给定的callable的参数。当调用newCallable时,newCallable会调用callable,并传给它arg_list中的参数。arg_list中的参数可能包含形如_n的名字,其中n是一个整数,这些参数是“占位符”,表示newCallable的参数,它们占据了传递给newCallable的参数的“位置”。数值n表示生成的可调用对象中参数的位置,比如_1为newCallable的第一个参数,_2为第二个参数,以此类推。
此外,除了用auto接收包装后的可调用对象,也可以用function类型指明返回值和形参类型后接收包装后的可调用对象。
无意义的绑定
下面这种绑定就是无意义的绑定:
int Plus(int a, int b)
{
return a + b;
}
int main()
{
//无意义的绑定
function<int(int, int)> func = bind(Plus, placeholders::_1, placeholders::_2);
cout << func(1, 2) << endl; //3
return 0;
}
绑定时第一个参数传入函数指针这个可调用对象,但后续传入的要绑定的参数列表依次是placeholders::_1和placeholders::_2,表示后续调用新生成的可调用对象时,传入的第一个参数传给placeholders::_1,传入的第二个参数传给placeholders::_2。此时绑定后生成的新的可调用对象的传参方式,和原来没有绑定的可调用对象是一样的,所以说这是一个无意义的绑定。
绑定固定参数
如果想把Plus函数的第二个参数固定绑定为10,可以在绑定时将参数列表的placeholders::_2设置为10。比如:
int Plus(int a, int b)
{
return a + b;
}
int main()
{
//绑定固定参数
function<int(int)> func = bind(Plus, placeholders::_1, 10);
cout << func(2) << endl; //12
return 0;
}
此时调用绑定后新生成的可调用对象时就只需要传入一个参数,它会将该值与10相加后的结果进行返回。
调整传参顺序
对于下面Sub类中的sub成员函数,sub成员函数的第一个参数是隐藏的this指针,如果想要在调用sub成员函数时不用对象进行调用,那么可以将sub成员函数的第一个参数固定绑定为一个Sub对象。比如:
class Sub
{
public:
int sub(int a, int b)
{
return a - b;
}
};
int main()
{
//绑定固定参数
function<int(int, int)> func = bind(&Sub::sub, Sub(), placeholders::_1, placeholders::_2);
cout << func(1, 2) << endl; //-1
return 0;
}
此时调用绑定后生成的可调用对象时,就只需要传入用于相减的两个参数了,因为在调用时会固定帮我们传入一个匿名对象给this指针。
如果想要将sub成员函数用于相减的两个参数的顺序交换,那么直接在绑定时将placeholders::_1和placeholders::_2的位置交换一下就行了。比如:
class Sub
{
public:
int sub(int a, int b)
{
return a - b;
}
};
int main()
{
//调整传参顺序
function<int(int, int)> func = bind(&Sub::sub, Sub(), placeholders::_2, placeholders::_1);
cout << func(1, 2) << endl; //1
return 0;
}
根本原因就是因为,后续调用新生成的可调用对象时,传入的第一个参数会传给placeholders::_1,传入的第二个参数会传给placeholders::_2,因此可以在绑定时通过控制placeholders::_n的位置,来控制第n个参数的传递位置。