• 对图片做透视变换,borderMode=cv2.BORDER_REFLECT,# 对称法,以图像边缘为轴进行对称填充


    # -*- coding:utf-8 -*-
    import cv2
    import numpy as np
    
    # class wraper():
    #     def __init__(self):
    
    def rad(x):#弧度,角度数×﹙π/180°﹚
        return x * np.pi / 180
    
    def rotate_3(img, angle_vari=30):
        w, h = img.shape[0:2]
        fov = 42
        # anglex = np.random.uniform(-angle_vari, angle_vari)
        # angley = np.random.uniform(-angle_vari, angle_vari)
        # anglez = np.random.uniform(-angle_vari + 10, angle_vari - 10)
        anglex = -60# plan angle
        angley = -3.5 # align left-right
        anglez = 5
        #tan(FOV/ 2) = (实际视场宽度 / 2) / 实际视距 = (底片宽度 / 2) / 焦距
        # 镜头与图像间的距离,21为半可视角,算z的距离是为了保证在此可视角度下恰好显示整幅图像
        z = np.sqrt(w ** 2 + h ** 2) / 2 / np.tan(rad(fov / 2))
        # 齐次变换矩阵
        rx = np.array([[1, 0, 0, 0],
                       [0, np.cos(rad(anglex)), -np.sin(rad(anglex)), 0],
                       [0, -np.sin(rad(anglex)), np.cos(rad(anglex)), 0, ],
                       [0, 0, 0, 1]], np.float32)
    
        ry = np.array([[np.cos(rad(angley)), 0, np.sin(rad(angley)), 0],
                       [0, 1, 0, 0],
                       [-np.sin(rad(angley)), 0, np.cos(rad(angley)), 0, ],
                       [0, 0, 0, 1]], np.float32)
    
        rz = np.array([[np.cos(rad(anglez)), np.sin(rad(anglez)), 0, 0],
                       [-np.sin(rad(anglez)), np.cos(rad(anglez)), 0, 0],
                       [0, 0, 1, 0],
                       [0, 0, 0, 1]], np.float32)
        r = rx.dot(ry).dot(rz)
        # 四对点的生成
        pcenter = np.array([h / 2, w / 2, 0, 0], np.float32)
    
        p1 = np.array([0, 0, 0, 0], np.float32) - pcenter
        p2 = np.array([w, 0, 0, 0], np.float32) - pcenter
        p3 = np.array([0, h, 0, 0], np.float32) - pcenter
        p4 = np.array([w, h, 0, 0], np.float32) - pcenter
        dst1 = r.dot(p1)
        dst2 = r.dot(p2)
        dst3 = r.dot(p3)
        dst4 = r.dot(p4)
        list_dst = [dst1, dst2, dst3, dst4]
        org = np.array([[0, 0],
                        [w, 0],
                        [0, h],
                        [w, h]], np.float32)
        dst = np.zeros((4, 2), np.float32)
    
        # 投影至成像平面
        for i in range(4):
            dst[i, 0] = list_dst[i][0] * z / (z - list_dst[i][2]) + pcenter[0]
            dst[i, 1] = list_dst[i][1] * z / (z - list_dst[i][2]) + pcenter[1]
        # 计算变换矩阵
        warpR = cv2.getPerspectiveTransform(org, dst)
    
        result = cv2.warpPerspective(img, warpR, (h, w),
                                     flags=cv2.INTER_NEAREST,
                                     borderMode=cv2.BORDER_REFLECT,# 对称法,以图像边缘为轴进行对称填充
                                     borderValue = 0)
    
        return result
    
    
    import os
    i = 0
    if __name__ == '__main__':
    
        floor_dir = '/home/yao/Documents/webfloor/wood_floor_resize640'
        savePath = '/home/yao/Documents/webfloor/wraper_floor_crop2/'
        floor_list = [img for img in os.listdir(floor_dir)]
        n = len(floor_list)
        # im1 = '/home/yao/Documents/webfloor/wood_floor_resize1024/000008.jpg'
        for im in floor_list:
            imPath = os.path.join(floor_dir,im)
            img = cv2.imread(imPath)
            angle_vari = 60
            # while True:
            result = rotate_3(img, angle_vari=angle_vari)
            tem = result.copy()
            # result[tem==0]=100
            # result_resize = cv2.resize(result,())
            cv2.imwrite('{}/floor_{}.jpg'.format(savePath,i), result)
            i += 1
            # cv2.imwrite('0001.jpg' , result)
            print(result.shape)
            # cv2.imshow("result", result)
            # c = cv2.waitKey(0)
            # # exit(00)
  • 相关阅读:
    多线程程序是如何执行代码的?
    【开源】基于Vue.js的大学兼职教师管理系统的设计和实现
    【深度学习】(问题记录)<对一个变量求梯度得到什么>-线性回归-小批量随机梯度下降
    软件设计原则 1小时系列 (C++版)
    【STM32单片机】贪吃蛇游戏设计
    JNDI,SPI,JMS(AMQP) , JMX,RMI与RPC
    某上市环境公司:汇聚18个系统,看数据治理如何反哺业务
    你不知道的浏览器页面渲染机制
    aws 整理和理解aws的虚拟化技术
    【Python】函数(function)和方法(method)的区别
  • 原文地址:https://blog.csdn.net/xingtianyao/article/details/126763497