• 毫米波成像 论文阅读笔记 | HawkEye, CVPR 2020


    原文链接: https://mp.weixin.qq.com/s/KyMyyZert7ZYltfZaYrBWA

    论文阅读笔记:[1] J. Guan, S. Madani, S. Jog, S. Gupta, and H. Hassanieh, “Through Fog High-Resolution Imaging Using Millimeter Wave Radar,” in 2020 CVPR

    picture 5

    Abstract

    • mmWave high-resolution imaging: in dense fog
    • Motivation
      • mmWave signals:

        ✅ have favorable propagation characteristics in low visibility conditions

        ❌ suffer from very low resolution, specularity, and noise artifacts.

      • 光学传感器则反之

    • 本文:HawkEye
      • leverage cGAN to recover shapes from low-resolution mmWave heatmaps
      • 基于mmWave signal 的structure和nature 设计
      • 实现了a data synthesizer:合成训练数据集
      • implement our system on a custom-built mmWave radar platform + demonstrate performance improvement

    1 Introduction

    mmWave Radar high-resolution imaging的意义

    • Significance : severe weather conditions (dense fog, smog, snowstorms, and sandstorms)、low light(无LiDAR时) 下的自动驾驶需要毫米波雷达
    • Several challenges : However, mmWave wave radar is still difficult to use for imaging (如下图d,e)
      • 1 Low resolution
      • 2 highly specular reflection
      • 3 multipath propagation: creating shadow reflections and artifacts in various locations

    picture 1

    • Existing Solutions :
      • 1 improve resolution: use human-sized mechanically steerable arrays
      • 2 eliminate multipath reflections : isolate the object being imaged in the near field
      • 3 address specularity: rotate the arrays around the object
      • 显然,上述设计对于自动驾驶而言 extremely bulky and not practical

    本文工作 HawkEye 概述

    • Key idea :

      • cast the problem of predicting high-frequency shape from raw mmWave heatmaps as a learning problem
    • Advantages :

      • Use of learning provides robustness

      • effectively leverage priors on shapes of cars to make reasonable predictions

    • Innovations

      • the design of the Neural Network : map 3D input heatmaps to 2D depth maps

      • Loss function : combination of perceptual, L1, and adversarial loss

      • Training Data :

        Realistic radar data synthesizer that captures unique characteristics of radar +

        real-world data collection platform to collect real data for fine-tuning and benchmarking

    • System Overview (四个模块,如下图)

      • Module 1 : custom-built mmWave imaging module ⇒ \Rightarrow capture radar data

      • Module 2 : A wide baseline stereo camera system ⇒ \Rightarrow capture GT (high-resolution 2D depth maps)

      • Module 3 : Synthesizer ⇒ \Rightarrow 合成数据 from 3D CAD models of cars and mmWave ray tracing algorithms

      • Module 4 : GAN ⇒ \Rightarrow generate high-resolution depth maps + reconstruct the car in the real scene in fog (from raw 3D mmWave heatmaps)

        picture 2

    2 Related Work

    2.1 Super-Resolution

    • 图像超分辨

      • rely on the correspondence of image patches between low and high resolution images
    • 点云超分辨 (closest to this work)

      • upsamplng sparse 3D LiDAR data to create dense 2D depth maps
    • 上述工作的特点(优势)

      • 同时使用相机 + LiDAR
      • rely on high frequency visual features like edges to cluster and upsample objects
    • 高分辨毫米波超分辨的困难

      • Significantly lower spatial resolution
      • High frequency visual features (like boundaries and edges) are not apparent
      • 传统上采样/超分辨技术无法解决artifacts and specularities

    2.2 LiDAR in Fog

    现有工作的limitations

    • 1 require knowing a depth map of the scene as priori
    • 2 require static object (estimating the statistical distribution of the photon reflected off the object)
    • 3 limited detection depth or resolution or FOV

    但毫米波没有这些限制

    2.3 Radar Imaging Systems

  • 相关阅读:
    CAD特殊符号,你不一定会
    (持续整理)Windows快捷键
    【OpenCV】在Linux上使用OpenCvSharp
    基于源码理解通透Iterator迭代器的Fail-Fast快速失败与Fail-Safe安全失败机制
    可托拉拽的WPF选项卡控件,强大好用!
    受邀参加中日韩创新人才主题交流研讨会
    python设计模式_Python六大原则,23种设计模式
    Git教程——git使用
    day17正则表达式作业
    Java基于微信小程序的校园流浪猫收养系统 uniapp
  • 原文地址:https://blog.csdn.net/qazwsxrx/article/details/126660548