论文阅读笔记:[1] J. Guan, S. Madani, S. Jog, S. Gupta, and H. Hassanieh, “Through Fog High-Resolution Imaging Using Millimeter Wave Radar,” in 2020 CVPR
mmWave signals:
✅ have favorable propagation characteristics in low visibility conditions
❌ suffer from very low resolution, specularity, and noise artifacts.
光学传感器则反之
mmWave Radar high-resolution imaging的意义
本文工作 HawkEye 概述
Key idea :
Advantages :
Use of learning provides robustness
effectively leverage priors on shapes of cars to make reasonable predictions
Innovations
the design of the Neural Network : map 3D input heatmaps to 2D depth maps
Loss function : combination of perceptual, L1, and adversarial loss
Training Data :
✅ Realistic radar data synthesizer that captures unique characteristics of radar +
✅ real-world data collection platform to collect real data for fine-tuning and benchmarking
System Overview (四个模块,如下图)
Module 1 : custom-built mmWave imaging module ⇒ \Rightarrow ⇒ capture radar data
Module 2 : A wide baseline stereo camera system ⇒ \Rightarrow ⇒ capture GT (high-resolution 2D depth maps)
Module 3 : Synthesizer ⇒ \Rightarrow ⇒ 合成数据 from 3D CAD models of cars and mmWave ray tracing algorithms
Module 4 : GAN ⇒ \Rightarrow ⇒ generate high-resolution depth maps + reconstruct the car in the real scene in fog (from raw 3D mmWave heatmaps)
图像超分辨
点云超分辨 (closest to this work)
上述工作的特点(优势) :
高分辨毫米波超分辨的困难
现有工作的limitations
但毫米波没有这些限制