题目:
给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
子数组 是数组中的一个连续部分。
示例1:
输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。
示例2:
输入:nums = [1]
输出:1
示例3:
输入:nums = [5,4,-1,7,8]
输出:23
提示:
1 <= nums.length <= 10^5
-10^4 <= nums[i] <= 10^4
进阶:如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的 分治法 求解。
解题思路:
这是一道典型的使用「动态规划」解决的问题,需要我们掌握动态规划问题设计状态的技巧(无后效性),并且需要知道如何推导状态转移方程,最后再去优化空间。
关键 1:理解题意
题目要我们找出和最大的连续子数组的值是多少,「连续」是关键字,连续很重要,不是子序列。
题目只要求返回结果,不要求得到最大的连续子数组是哪一个。这样的问题通常可以使用「动态规划」解决。
关键 2:如何定义子问题(如何定义状态)
设计状态思路:把不确定的因素确定下来,进而把子问题定义清楚,把子问题定义得简单。动态规划的思想通过解决了一个一个简单的问题,进而把简单的问题的解组成了复杂的问题的解。
我们 不知道和最大的连续子数组一定会选哪一个数,那么我们可以求出 所有 经过输入数组的某一个数的连续子数组的最大和。
例如,示例 1 输入数组是 [-2,1,-3,4,-1,2,1,-5,4] ,我们可以求出以下子问题:
一共 9 个子问题,这些子问题之间的联系并没有那么好看出来,这是因为 子问题的描述还有不确定的地方(这件事情叫做「有后效性」,我们在本文的最后会讲解什么是「无后效性」)。
例如「子问题 3」:经过 -3 的连续子数组的最大和是多少。
「经过 -3 的连续子数组」我们任意举出几个:
我们不确定的是:-3 是连续子数组的第几个元素。那么我们就把 −3 定义成连续子数组的最后一个元素。在新的定义下,我们列出子问题如下:
我们加上了「结尾的」,这些子问题之间就有了联系。我们单独看子问题 1 和子问题 2:
以 −2 结尾的连续子数组是 [-2],因此最大和就是 -2。
以 1 结尾的连续子数组有 [-2,1] 和 [1] ,其中 [-2,1] 就是在「子问题 1」的后面加上 1 得到。-2 + 1 = -1 < 1,因此「子问题 2」 的答案是 1。
参考代码:
public class Solution {
public int maxSubArray(int[] nums) {
int len = nums.length;
// dp[i] 表示:以 nums[i] 结尾的连续子数组的最大和
int[] dp = new int[len];
dp[0] = nums[0];
for (int i = 1; i < len; i++) {
if (dp[i - 1] > 0) {
dp[i] = dp[i - 1] + nums[i];
} else {
dp[i] = nums[i];
}
}
// 也可以在上面遍历的同时求出 res 的最大值,这里我们为了语义清晰分开写,大家可以自行选择
int res = dp[0];
for (int i = 1; i < len; i++) {
res = Math.max(res, dp[i]);
}
return res;
}
}