。
想象一个黑箱子,你给它输入(样本),它给你输出(实际输出),但是输出和你想要的结果有偏差,于是你事先告诉它你想要的结果(期望输出),它做一些调整(调整内部权值和阈值)以适应你的期望,如此反复,黑箱子就摸透了你的这些样本的规律,于是在来一些没有期望输出的样本就能预测输出了,但是这些样本必须是属于一类问题的,如果换了一类就必须重新训练它,这个黑箱子是神经网络,有很多有层次有连接的神经元构成。
谷歌人工智能写作项目:小发猫
神经网络的基本原理是:每个神经元把最初的输入值乘以一定的权重,并加上其他输入到这个神经元里的值(并结合其他信息值),最后算出一个总和,再经过神经元的偏差调整,最后用激励函数把输出值标准化常见的神经网络结构。
基本上,神经网络是由一层一层的不同的计算单位连接起来的。我们把计算单位称为神经元,这些网络可以把数据处