1. DataFrame
为了支持结构化数据的处理,Spark SQL 提供了新的数据结构 DataFrame。DataFrame 是一个由具名列组成的数据集。它在概念上等同于关系数据库中的表或 R/Python 语言中的 data frame
。 由于 Spark SQL 支持多种语言的开发,所以每种语言都定义了 DataFrame
的抽象
2. DataSet
Dataset 也是分布式的数据集合,它集成了 RDD 和 DataFrame 的优点,具备强类型的特点,同时支持 Lambda 函数。Spark 2.0 后,为了方便开发者,Spark 将 DataFrame 和 Dataset 的 API 融合到一起,提供了结构化的 API(Structured API),即用户可以通过一套标准的 API 就能完成对两者的操作。
Spark SQL && DataFrame && Dataset
如果你用的是 Spark SQL 的查询语句,则直到运行时你才会发现有语法错误,而如果你用的是 DataFrame 和 Dataset,则在编译时就可以发现错误 (这节省了开发时间和整体代价)。