matlab系列文章:👉 目录 👈
>> syms x
>> y = ((1+x)^(1/2)-(1-x)^(1/2))/((1+x)^(1/3)-(1-x)^(1/3))
y =
((x + 1)^(1/2) - (1 - x)^(1/2))/((x + 1)^(1/3) - (1 - x)^(1/3))
>> limit(y,x,0)
ans =
3/2
>> syms x
>> y = ((3*x+2)/(3*x-1))^(2*x-1)
y =
((3*x + 2)/(3*x - 1))^(2*x - 1)
>> limit(y,x,0)
ans =
-1/2
>> syms x
>> y = ((1/x^2)-1/(sin(x)^2))
y =
1/x^2 - 1/sin(x)^2
>> limit(y,x,0)
ans =
-1/3
>> syms x
>> y = (pi/2 - atan(x))^(1/(log(x)))
y =
(pi/2 - atan(x))^(1/log(x))
>> limit(y,x,0)
ans =
1
>> y = (x^(1/2)+1)*atan(x)
y =
atan(x)*(x^(1/2) + 1)
>> diff(y,x)
ans =
atan(x)/(2*x^(1/2)) + (x^(1/2) + 1)/(x^2 + 1)
>> y = (1+x^2)/(sin(x)+cos(x))
y =
(x^2 + 1)/(cos(x) + sin(x))
>> y1 = diff(y,x)
y1 =
(2*x)/(cos(x) + sin(x)) - ((x^2 + 1)*(cos(x) - sin(x)))/(cos(x) + sin(x))^2
>> y2 = diff(y1,x)
y2 =
(x^2 + 1)/(cos(x) + sin(x)) + 2/(cos(x) + sin(x)) + (2*(x^2 + 1)*(cos(x) - sin(x))^2)/(cos(x) + sin(x))^3 - (4*x*(cos(x) - sin(x)))/(cos(x) + sin(x))^2
>> y = (x+(x+(x)^(1/2))^(1/2))^(1/2)
y =
(x + (x + x^(1/2))^(1/2))^(1/2)
>> diff(y,x)
ans =
((1/(2*x^(1/2)) + 1)/(2*(x + x^(1/2))^(1/2)) + 1)/(2*(x + (x + x^(1/2))^(1/2))^(1/2))
>> syms x y t a
>> x = a*(cos(t)+t*sin(t))
x =
a*(cos(t) + t*sin(t))
>> y = a*(sin(t)-t*cos(t))
y =
a*(sin(t) - t*cos(t))
>> dx = diff(x,t)
dx =
a*t*cos(t)
>> dy = diff(y,t)
dy =
a*t*sin(t)
>> dy/dx
ans =
sin(t)/cos(t)
>> syms x y
>> y = cos(x)/(1+(sin(x))^2)
y =
cos(x)/(sin(x)^2 + 1)
>> int(y,x,0,pi/2)
ans =
pi/4
>> syms x y a
>> y = (x^2)*((a-x)/(a+x))^(1/2)
y =
x^2*((a - x)/(a + x))^(1/2)
>> int(0,a)
ans =
0
>> int(y,x,0,a)
ans =
(a^3*(3*pi - 8))/12
>> syms x y a
>> y = 1/((x^2-x+1)^(3/2))
y =
1/(x^2 - x + 1)^(3/2)
>> int(y,x,0,1)
ans =
4/3
>> syms x y n
>> y = 1/(n^2)
y =
1/n^2
>> symsum(y,n,1,Inf)
ans =
pi^2/6
>> y = (-1)^(n-1)/n
y =
(-1)^(n - 1)/n
>> symsum(y,n,1,Inf)
ans =
log(2)
>> y = (x^(2*n-1))/(2*n-1)
y =
x^(2*n - 1)/(2*n - 1)
>> symsum(y,n,1,Inf)
ans =
piecewise(abs(x) < 1, atanh(x))