在选择使用 Python3 的多进程(multiprocessing)还是多线程(threading)时,主要取决于任务的性质(即 CPU 密集型任务还是 I/O 密集型任务)和具体的需求。
multiprocessing)from multiprocessing import Process, Pool
def cpu_bound_task(x):
# 假设这是一个CPU密集型任务
return x * x
if __name__ == '__main__':
with Pool(4) as pool:
results = pool.map(cpu_bound_task, range(10))
print(results)
threading)import threading
import requests
def fetch_url(url):
response = requests.get(url)
print(f"Fetched {url} with status {response.status_code}")
urls = ["http://example.com", "http://example.org", "http://example.net"]
threads = []
for url in urls:
thread = threading.Thread(target=fetch_url, args=(url,))
threads.append(thread)
thread.start()
for thread in threads:
thread.join()
任务性质:
隔离需求:
系统资源:
响应性:
通过根据任务的性质和需求选择合适的并发模型,可以有效地提升程序的性能和响应性。