代码示例
Maven 依赖
<dependencies>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java</artifactId>
<version>1.19.0</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-clients</artifactId>
<version>1.19.0</version>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-api</artifactId>
<version>1.7.25</version>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
<version>1.7.25</version>
</dependency>
</dependencies>
log4j.properties
log4j.rootLogger=INFO, console
log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{HH:mm:ss,SSS} %-5p %-60c %x - %m%n
1、_01_QuickStart
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.core.execution.JobClient;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows;
import org.apache.flink.util.Collector;
import java.time.Duration;
public class _01_QuickStart {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStream<Tuple2<String, Integer>> dataStream = env
.socketTextStream("localhost", 8888)
.flatMap(new Splitter())
.keyBy(value -> value.f0)
.window(TumblingProcessingTimeWindows.of(Duration.ofSeconds(5)))
.sum(1);
dataStream.print();
// JobExecutionResult jobExecutionResult = env.execute("Window WordCount");
//程序完成时打印
//JobExecutionResult=>Program execution finished
//Job with JobID c01e1255752cbb34469a9a10177e637c has finished.
//Job Runtime: 25596 ms
// System.out.println("JobExecutionResult=>"+jobExecutionResult.getJobExecutionResult());
JobClient jobClient = env.executeAsync("Window WordCount");
// Java程序可以通过JobClient同Flink Job交互
// jobID=>32e976f03ac7243c09a5cf07c0739921
// jobStatus=>RUNNING
System.out.println("jobID=>"+jobClient.getJobID());
System.out.println("jobStatus=>"+jobClient.getJobStatus().get());
}
public static class Splitter implements FlatMapFunction<String, Tuple2<String, Integer>> {
@Override
public void flatMap(String sentence, Collector<Tuple2<String, Integer>> out) throws Exception {
for (String word : sentence.split(",")) {
out.collect(new Tuple2<String, Integer>(word, 1));
}
}
}
}
2、_02_ReadFileSource
import org.apache.flink.api.common.ExecutionConfig;
import org.apache.flink.api.java.io.TextInputFormat;
import org.apache.flink.core.fs.Path;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.FileProcessingMode;
import java.io.File;
public class _02_ReadFileSource {
public static void main(String[] args) throws Exception {
ExecutionConfig executionConfig = new ExecutionConfig();
executionConfig.setAutoWatermarkInterval(1000);
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(executionConfig.toConfiguration());
env.setBufferTimeout(1000);
System.out.println("自动生成水位线间隔=>"+env.getConfig().getAutoWatermarkInterval());
//第一次打印
//1> a
//5> h
//6> i
//4> f
//2> c
//3> e
//1> b
//2> d
//4> g
//向本地文件中新增三行insert
//第二次打印
//5> insert
//2> i
//2> insert
//3> insert
//1> g
//1> h
//8> d
//7> a
//8> e
//7> b
//8> f
//7> c
DataStreamSource<String> source = env.readFile(new TextInputFormat(Path.fromLocalFile(new File("word.txt")))
, "/Users/***/Desktop/word.txt"
, FileProcessingMode.PROCESS_CONTINUOUSLY
, 10000);
source.print();
env.execute();
}
}
3、_03_CollectAsync
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.CloseableIterator;
public class _03_CollectAsync {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// 从元素列表创建一个 DataStream
DataStream<Integer> myInts = env.fromElements(1, 2, 3, 4, 5);
CloseableIterator<Integer> iterator = myInts.collectAsync();
env.execute();
while (iterator.hasNext()){
System.out.println("iterator=>"+iterator.next());
}
}
}
4、_04_JobClientStopWithSavepoint
import org.apache.flink.api.java.io.TextInputFormat;
import org.apache.flink.core.execution.JobClient;
import org.apache.flink.core.fs.Path;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.FileProcessingMode;
import org.apache.flink.util.CloseableIterator;
import java.io.File;
// 在 程序完成时 或者 CheckPoint触发时 才会输出结果
public class _04_JobClientStopWithSavepoint {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.enableCheckpointing(2000);
DataStreamSource<String> source = env.readFile(new TextInputFormat(Path.fromLocalFile(new File("word.txt")))
, "/Users/***/Desktop/word.txt"
, FileProcessingMode.PROCESS_CONTINUOUSLY
, 10000);
CloseableIterator<String> iterator = source.collectAsync();
JobClient jobClient = env.executeAsync();
// TimeUnit.SECONDS.sleep(5);
// jobClient.stopWithSavepoint(false,"/Users/hhx/Desktop/", SavepointFormatType.DEFAULT);
while (iterator.hasNext()){
System.out.println("iterator=>"+iterator.next());
}
}
}