• 深度学习AI识别人脸年龄


    以下链接来自 @落痕的寒假

    GitHub - luohenyueji/OpenCV-Practical-Exercise: OpenCV practical exercise

    https://download.csdn.net/download/luohenyj/10993309

    1. import cv2 as cv
    2. import time
    3. import argparse
    4. def getFaceBox(net, frame, conf_threshold=0.7):
    5. frameOpencvDnn = frame.copy()
    6. frameHeight = frameOpencvDnn.shape[0]
    7. frameWidth = frameOpencvDnn.shape[1]
    8. blob = cv.dnn.blobFromImage(frameOpencvDnn, 1.0, (300, 300), [104, 117, 123], True, False)
    9. net.setInput(blob)
    10. detections = net.forward()
    11. bboxes = []
    12. for i in range(detections.shape[2]):
    13. confidence = detections[0, 0, i, 2]
    14. if confidence > conf_threshold:
    15. x1 = int(detections[0, 0, i, 3] * frameWidth)
    16. y1 = int(detections[0, 0, i, 4] * frameHeight)
    17. x2 = int(detections[0, 0, i, 5] * frameWidth)
    18. y2 = int(detections[0, 0, i, 6] * frameHeight)
    19. bboxes.append([x1, y1, x2, y2])
    20. cv.rectangle(frameOpencvDnn, (x1, y1), (x2, y2), (0, 255, 0), int(round(frameHeight/150)), 8)
    21. return frameOpencvDnn, bboxes
    22. parser = argparse.ArgumentParser(description='Use this script to run age and gender recognition using OpenCV.')
    23. parser.add_argument('--input', help='Path to input image or video file. Skip this argument to capture frames from a camera.')
    24. args = parser.parse_args()
    25. faceProto = "age_gender/model/opencv_face_detector.pbtxt"
    26. faceModel = "age_gender/model/opencv_face_detector_uint8.pb"
    27. ageProto = "age_gender/model/age_deploy.prototxt"
    28. ageModel = "age_gender/model/age_net.caffemodel"
    29. genderProto = "age_gender/model/gender_deploy.prototxt"
    30. genderModel = "age_gender/model/gender_net.caffemodel"
    31. MODEL_MEAN_VALUES = (78.4263377603, 87.7689143744, 114.895847746)
    32. ageList = ['(0-2)', '(4-6)', '(8-12)', '(15-20)', '(25-32)', '(38-43)', '(48-53)', '(60-100)']
    33. genderList = ['Male', 'Female']
    34. # Load network
    35. ageNet = cv.dnn.readNet(ageModel, ageProto)
    36. genderNet = cv.dnn.readNet(genderModel, genderProto)
    37. faceNet = cv.dnn.readNet(faceModel, faceProto)
    38. # Open a video file or an image file or a camera stream
    39. cap = cv.VideoCapture(args.input if args.input else 0)
    40. padding = 20
    41. while cv.waitKey(1) < 0:
    42. # Read frame
    43. t = time.time()
    44. hasFrame, frame = cap.read()
    45. if not hasFrame:
    46. cv.waitKey()
    47. break
    48. frameFace, bboxes = getFaceBox(faceNet, frame)
    49. if not bboxes:
    50. print("No face Detected, Checking next frame")
    51. continue
    52. for bbox in bboxes:
    53. # print(bbox)
    54. face = frame[max(0,bbox[1]-padding):min(bbox[3]+padding,frame.shape[0]-1),max(0,bbox[0]-padding):min(bbox[2]+padding, frame.shape[1]-1)]
    55. blob = cv.dnn.blobFromImage(face, 1.0, (227, 227), MODEL_MEAN_VALUES, swapRB=False)
    56. genderNet.setInput(blob)
    57. genderPreds = genderNet.forward()
    58. gender = genderList[genderPreds[0].argmax()]
    59. # print("Gender Output : {}".format(genderPreds))
    60. print("Gender : {}, conf = {:.3f}".format(gender, genderPreds[0].max()))
    61. ageNet.setInput(blob)
    62. agePreds = ageNet.forward()
    63. age = ageList[agePreds[0].argmax()]
    64. print("Age Output : {}".format(agePreds))
    65. print("Age : {}, conf = {:.3f}".format(age, agePreds[0].max()))
    66. label = "{},{}".format(gender, age)
    67. cv.putText(frameFace, label, (bbox[0], bbox[1]-10), cv.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 255), 2, cv.LINE_AA)
    68. cv.imshow("Age Gender Demo", frameFace)
    69. # cv.imwrite("age-gender-out-{}".format(args.input),frameFace)
    70. print("time : {:.3f}".format(time.time() - t))
    1. 导入必要的模块:

      • cv2:用于图像处理和显示
      • time:用于计时
      • argparse:用于解析命令行参数
    2. 定义函数 getFaceBox 用于检测人脸框:

      • 通过 DNN 模型进行人脸检测,筛选出置信度高于阈值的人脸框,并在原图上绘制矩形框。
    3. 使用 argparse 解析命令行参数:

      • 支持从图像或视频文件中读取,如果没有指定输入则使用摄像头捕获。
    4. 定义人脸检测和年龄、性别识别模型的路径:

      • faceProto 和 faceModel 是人脸检测模型的配置文件和权重文件的路径。
      • ageProto 和 ageModel 是年龄识别模型的配置文件和权重文件的路径。
      • genderProto 和 genderModel 是性别识别模型的配置文件和权重文件的路径。
    5. 加载模型:

      • 使用 cv.dnn.readNet 加载人脸检测、年龄识别和性别识别模型。
    6. 打开视频文件或图像文件或者摄像头流,并设置填充值:

      • 使用 cv.VideoCapture 打开视频文件或图像文件或者摄像头流,并设置填充值为 20。
    7. 在循环中处理每帧图像:

      • 读取一帧图像,然后调用 getFaceBox 函数检测人脸框。
      • 对检测到的人脸框进行处理,提取人脸区域,并使用年龄和性别模型进行识别。
      • 将识别结果标记在图像上并显示。

    优化:

    1. 并行处理:如果一帧中有多个面孔,您可以并行处理它们以加快年龄和性别预测。这需要使用线程或多处理。

    2. 跳帧:对于视频输入,您不需要处理每一帧,特别是在视频流畅且面部变化不快的情况下。您可以处理每第 n 帧以减少计算量。

    3. 调整帧大小:在人脸检测之前缩小帧的尺寸可以提高速度,因为它减少了要处理的数据量。

    4. 优化 Blob 创建:您可以对性别和年龄检测模型重复使用 Blob 创建步骤,以避免重复计算。

    5. 使用更快的模型:如果您的应用程序允许,您可以切换到更快(尽管可能不太准确)的人脸检测模型。

    6. 资源管理:合理释放视频采集、窗口等资源,避免不必要的资源消耗。

    1. import cv2 as cv
    2. import time
    3. import argparse
    4. from threading import Thread
    5. from queue import Queue
    6. def processFace(faceNet, genderNet, ageNet, frame, bbox, resultsQueue, padding=20):
    7. face = frame[max(0, bbox[1] - padding):min(bbox[3] + padding, frame.shape[0] - 1),
    8. max(0, bbox[0] - padding):min(bbox[2] + padding, frame.shape[1] - 1)]
    9. blob = cv.dnn.blobFromImage(face, 1.0, (227, 227), MODEL_MEAN_VALUES, swapRB=False)
    10. genderNet.setInput(blob)
    11. genderPreds = genderNet.forward()
    12. gender = genderList[genderPreds[0].argmax()]
    13. ageNet.setInput(blob)
    14. agePreds = ageNet.forward()
    15. age = ageList[agePreds[0].argmax()]
    16. label = "{},{}".format(gender, age)
    17. resultsQueue.put((bbox, label))
    18. def main():
    19. parser = argparse.ArgumentParser(description='Age and gender recognition with OpenCV.')
    20. parser.add_argument('--input', help='Path to input image or video file. Skip this argument to capture frames from a camera.')
    21. args = parser.parse_args()
    22. # [Load models...]
    23. cap = cv.VideoCapture(args.input if args.input else 0)
    24. frameSkip = 5 # Process every 5th frame
    25. frameCount = 0
    26. resultsQueue = Queue()
    27. while cv.waitKey(1) < 0:
    28. hasFrame, frame = cap.read()
    29. if not hasFrame:
    30. cv.waitKey()
    31. break
    32. frameCount += 1
    33. if frameCount % frameSkip != 0:
    34. continue
    35. frameFace, bboxes = getFaceBox(faceNet, frame)
    36. if not bboxes:
    37. print("No face Detected, Checking next frame")
    38. continue
    39. for bbox in bboxes:
    40. # Start a new thread for processing each face
    41. Thread(target=processFace, args=(faceNet, genderNet, ageNet, frame, bbox, resultsQueue)).start()
    42. # Draw results from the queue
    43. while not resultsQueue.empty():
    44. bbox, label = resultsQueue.get()
    45. cv.putText(frameFace, label, (bbox[0], bbox[1] - 10), cv.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 255), 2, cv.LINE_AA)
    46. cv.imshow("Age Gender Demo", frameFace)
    47. cap.release()
    48. cv.destroyAllWindows()
    49. if __name__ == "__main__":
    50. main()

  • 相关阅读:
    java计算机毕业设计科研团队管理系统MyBatis+系统+LW文档+源码+调试部署
    Android---App 崩溃
    软著材料编写脚本
    网络安全(黑客)—2024自学
    DTO 模式(数据传输对象)
    Git详细介绍与SSH链接远程仓库
    35分钟了解sql注入-盲注(三)
    SSL数字证书服务
    java 注解 单元测试
    8、创建第一个鸿蒙页面并实现页面跳转
  • 原文地址:https://blog.csdn.net/EaSoNgo111/article/details/134372447