以下链接来自 @落痕的寒假
GitHub - luohenyueji/OpenCV-Practical-Exercise: OpenCV practical exercise
https://download.csdn.net/download/luohenyj/10993309
- import cv2 as cv
- import time
- import argparse
-
- def getFaceBox(net, frame, conf_threshold=0.7):
- frameOpencvDnn = frame.copy()
- frameHeight = frameOpencvDnn.shape[0]
- frameWidth = frameOpencvDnn.shape[1]
- blob = cv.dnn.blobFromImage(frameOpencvDnn, 1.0, (300, 300), [104, 117, 123], True, False)
-
- net.setInput(blob)
- detections = net.forward()
- bboxes = []
- for i in range(detections.shape[2]):
- confidence = detections[0, 0, i, 2]
- if confidence > conf_threshold:
- x1 = int(detections[0, 0, i, 3] * frameWidth)
- y1 = int(detections[0, 0, i, 4] * frameHeight)
- x2 = int(detections[0, 0, i, 5] * frameWidth)
- y2 = int(detections[0, 0, i, 6] * frameHeight)
- bboxes.append([x1, y1, x2, y2])
- cv.rectangle(frameOpencvDnn, (x1, y1), (x2, y2), (0, 255, 0), int(round(frameHeight/150)), 8)
- return frameOpencvDnn, bboxes
-
-
- parser = argparse.ArgumentParser(description='Use this script to run age and gender recognition using OpenCV.')
- parser.add_argument('--input', help='Path to input image or video file. Skip this argument to capture frames from a camera.')
-
- args = parser.parse_args()
-
- faceProto = "age_gender/model/opencv_face_detector.pbtxt"
- faceModel = "age_gender/model/opencv_face_detector_uint8.pb"
-
- ageProto = "age_gender/model/age_deploy.prototxt"
- ageModel = "age_gender/model/age_net.caffemodel"
-
- genderProto = "age_gender/model/gender_deploy.prototxt"
- genderModel = "age_gender/model/gender_net.caffemodel"
-
- MODEL_MEAN_VALUES = (78.4263377603, 87.7689143744, 114.895847746)
- ageList = ['(0-2)', '(4-6)', '(8-12)', '(15-20)', '(25-32)', '(38-43)', '(48-53)', '(60-100)']
- genderList = ['Male', 'Female']
-
- # Load network
- ageNet = cv.dnn.readNet(ageModel, ageProto)
- genderNet = cv.dnn.readNet(genderModel, genderProto)
- faceNet = cv.dnn.readNet(faceModel, faceProto)
-
- # Open a video file or an image file or a camera stream
- cap = cv.VideoCapture(args.input if args.input else 0)
- padding = 20
- while cv.waitKey(1) < 0:
- # Read frame
- t = time.time()
- hasFrame, frame = cap.read()
- if not hasFrame:
- cv.waitKey()
- break
-
- frameFace, bboxes = getFaceBox(faceNet, frame)
- if not bboxes:
- print("No face Detected, Checking next frame")
- continue
-
- for bbox in bboxes:
- # print(bbox)
- face = frame[max(0,bbox[1]-padding):min(bbox[3]+padding,frame.shape[0]-1),max(0,bbox[0]-padding):min(bbox[2]+padding, frame.shape[1]-1)]
-
- blob = cv.dnn.blobFromImage(face, 1.0, (227, 227), MODEL_MEAN_VALUES, swapRB=False)
- genderNet.setInput(blob)
- genderPreds = genderNet.forward()
- gender = genderList[genderPreds[0].argmax()]
- # print("Gender Output : {}".format(genderPreds))
- print("Gender : {}, conf = {:.3f}".format(gender, genderPreds[0].max()))
-
- ageNet.setInput(blob)
- agePreds = ageNet.forward()
- age = ageList[agePreds[0].argmax()]
- print("Age Output : {}".format(agePreds))
- print("Age : {}, conf = {:.3f}".format(age, agePreds[0].max()))
-
- label = "{},{}".format(gender, age)
- cv.putText(frameFace, label, (bbox[0], bbox[1]-10), cv.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 255), 2, cv.LINE_AA)
- cv.imshow("Age Gender Demo", frameFace)
- # cv.imwrite("age-gender-out-{}".format(args.input),frameFace)
- print("time : {:.3f}".format(time.time() - t))
导入必要的模块:
cv2:用于图像处理和显示time:用于计时argparse:用于解析命令行参数定义函数 getFaceBox 用于检测人脸框:
使用 argparse 解析命令行参数:
定义人脸检测和年龄、性别识别模型的路径:
faceProto 和 faceModel 是人脸检测模型的配置文件和权重文件的路径。ageProto 和 ageModel 是年龄识别模型的配置文件和权重文件的路径。genderProto 和 genderModel 是性别识别模型的配置文件和权重文件的路径。加载模型:
cv.dnn.readNet 加载人脸检测、年龄识别和性别识别模型。打开视频文件或图像文件或者摄像头流,并设置填充值:
cv.VideoCapture 打开视频文件或图像文件或者摄像头流,并设置填充值为 20。在循环中处理每帧图像:
getFaceBox 函数检测人脸框。
优化:
并行处理:如果一帧中有多个面孔,您可以并行处理它们以加快年龄和性别预测。这需要使用线程或多处理。
跳帧:对于视频输入,您不需要处理每一帧,特别是在视频流畅且面部变化不快的情况下。您可以处理每第 n 帧以减少计算量。
调整帧大小:在人脸检测之前缩小帧的尺寸可以提高速度,因为它减少了要处理的数据量。
优化 Blob 创建:您可以对性别和年龄检测模型重复使用 Blob 创建步骤,以避免重复计算。
使用更快的模型:如果您的应用程序允许,您可以切换到更快(尽管可能不太准确)的人脸检测模型。
资源管理:合理释放视频采集、窗口等资源,避免不必要的资源消耗。
- import cv2 as cv
- import time
- import argparse
- from threading import Thread
- from queue import Queue
-
- def processFace(faceNet, genderNet, ageNet, frame, bbox, resultsQueue, padding=20):
- face = frame[max(0, bbox[1] - padding):min(bbox[3] + padding, frame.shape[0] - 1),
- max(0, bbox[0] - padding):min(bbox[2] + padding, frame.shape[1] - 1)]
-
- blob = cv.dnn.blobFromImage(face, 1.0, (227, 227), MODEL_MEAN_VALUES, swapRB=False)
- genderNet.setInput(blob)
- genderPreds = genderNet.forward()
- gender = genderList[genderPreds[0].argmax()]
-
- ageNet.setInput(blob)
- agePreds = ageNet.forward()
- age = ageList[agePreds[0].argmax()]
-
- label = "{},{}".format(gender, age)
- resultsQueue.put((bbox, label))
-
- def main():
- parser = argparse.ArgumentParser(description='Age and gender recognition with OpenCV.')
- parser.add_argument('--input', help='Path to input image or video file. Skip this argument to capture frames from a camera.')
- args = parser.parse_args()
-
- # [Load models...]
-
- cap = cv.VideoCapture(args.input if args.input else 0)
- frameSkip = 5 # Process every 5th frame
- frameCount = 0
- resultsQueue = Queue()
-
- while cv.waitKey(1) < 0:
- hasFrame, frame = cap.read()
- if not hasFrame:
- cv.waitKey()
- break
-
- frameCount += 1
- if frameCount % frameSkip != 0:
- continue
-
- frameFace, bboxes = getFaceBox(faceNet, frame)
- if not bboxes:
- print("No face Detected, Checking next frame")
- continue
-
- for bbox in bboxes:
- # Start a new thread for processing each face
- Thread(target=processFace, args=(faceNet, genderNet, ageNet, frame, bbox, resultsQueue)).start()
-
- # Draw results from the queue
- while not resultsQueue.empty():
- bbox, label = resultsQueue.get()
- cv.putText(frameFace, label, (bbox[0], bbox[1] - 10), cv.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 255), 2, cv.LINE_AA)
-
- cv.imshow("Age Gender Demo", frameFace)
-
- cap.release()
- cv.destroyAllWindows()
-
- if __name__ == "__main__":
- main()