- ##学习率衰减策略
- import torch.nn.functional as F
- import torch
- import torch.nn as nn
- import matplotlib.pyplot as plt
-
- #初始化模型
- class Net(nn.Module):
- def __init__(self):
- super(Net, self).__init__()
- self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
- self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
- self.conv2_drop = nn.Dropout2d()
- self.fc1 = nn.Linear(320, 50)
- self.fc2 = nn.Linear(50, 10)
- def forward(self, x):
- x = F.relu(F.max_pool2d(self.conv1(x), 2))
- x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
- x = x.view(-1, 320)
- x = F.relu(self.fc1(x))
- x = F.dropout(x, training=self.training)
- x = self.fc2(x)
- return x
- model=Net()
- input=torch.randn(1,1,28,28)
- output=model(input)
- print(output.shape)
- #初始化优化器
- optimizer = torch.optim.SGD(model.parameters(), lr=1)
-
- # scheduler = torch.opti