• Unit2_1:动态规划DP


    一、介绍

    动态规划类似于分治法,它们都将一个问题划分为更小的子问题
    最优子结构:问题的最优解包含子问题的最优解。DP适用的原因就在这
    当子问题重叠时,即它们共享公共子问题时,可减小时间复杂度
    DP通常用于优化问题,有许多解决方案的问题,我们想找到最好的一个
    DP问题的求解思路一般就是
       先描述最优解的结构
       递归地定义最优解的值
       计算最优解的值(通常是自下而上)
       根据计算出的信息构造最优解(如果需要)

    二、0-1背包问题

    问题描述

    n 个商品 , v i 表示第 i 个物品的价值 , w i 表示第 i 个物品的重量 一个能装入 W 重的背包 , 使用背包装下价值最多的物品 限制条件 : 我们不能取物品的一部分,我们取整个物品,或者什么都不取。 ( 这就是为什么它被称为 0 − 1 背包。 ) n个商品,v_i表示第i个物品的价值,w_i表示第i个物品的重量\\ 一个能装入W重的背包,使用背包装下价值最多的物品\\ 限制条件:我们不能取物品的一部分,我们取整个物品,或者什么都不取。\\(这就是为什么它被称为0-1背包。) n个商品,vi表示第i个物品的价值,wi表示第i个物品的重量一个能装入W重的背包,使用背包装下价值最多的物品限制条件:我们不能取物品的一部分,我们取整个物品,或者什么都不取。(这就是为什么它被称为01背包。)

    分析

    V [ i , w ] 表示重量为 w 背包 , 在前 i 种商品选择的最大价值 V[i,w]表示重量为w背包,在前i种商品选择的最大价值 V[i,w]表示重量为w背包,在前i种商品选择的最大价值
    对于第i个物品,我们要么选取它,要么不选择,因此最大价值转移方程为

    V [ i , w ] = m a x ( V [ i − 1 , w ] , v i + V [ i − 1 , w − w i ] ) V[i,w]=max(V[i-1,w],v_i+V[i-1,w-w_i]) V[i,w]=max(V[i1,w],vi+V[i1,wwi])

    若使用递归重复计算很多值,时间复杂度为 T ( n ) = O ( 2 W ) T(n)=O(2^W) T(n)=O(2W),因此要重复利用最优子结构的性质.
    在这里插入图片描述
    初始化: V [ 0 , w ] = 0 V[0,w]=0 V[0,w]=0 f o r for for 0 ≤ w ≤ W 0 \leq w \leq W 0wW 此时没有商品,自然没有价值
    接下来按顺序填表:
    在这里插入图片描述
    在这里插入图片描述

    伪代码

    Knapsack(v,w,n,W)
    for w=0 to W do
    	V[0,w]=0;
    end
    for i=1 to n do
    	for w=0 to W
    		if w[i]
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14

    若是想要记录最优解的路径,需要维护一个 k e e p [ i ] [ w ] keep[i][w] keep[i][w],如果选择i作为 V [ i , w ] V[i,w] V[i,w],则 k e e p [ i ] [ w ] = 1 keep[i][w]=1 keep[i][w]=1
    路径只需要
    i f k e e p [ n , w ] = 1. 则选择 n 且继续从 k e p p [ n − 1 ] [ w − w n ] 开始 if keep[n,w]=1.则选择n且继续从kepp[n-1][w-w_n]开始 ifkeep[n,w]=1.则选择n且继续从kepp[n1][wwn]开始
    i f k e e p [ n , w ] = 0. 则不选择 n 且继续从 k e p p [ n − 1 ] [ w ] 开始 if keep[n,w]=0.则不选择n且继续从kepp[n-1][w]开始 ifkeep[n,w]=0.则不选择n且继续从kepp[n1][w]开始
    因此路径输出代码:

    K ← W
    for i ← n to 1 do
    	if keep[i][K] is equal to 1 then
    		Output i
    		K ← K-w[i]
    	end
    end
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7

    在这里插入图片描述

    时间复杂度

    两层循环,时间复杂度 T ( n ) = O ( n W ) T(n)=O(nW) T(n)=O(nW)
    本质上,DP问题是用空间换时间,将结果放在空间中而不用下次花费时间再去计算

    三、钢条切割问题

    问题描述

    给定一个长度为 n 的棒材和一个价格表,其中 p i 为长度为 i 的棒材的价格 确定最大的收入 r n , 以及切割钢条的方案 给定一个长度为n的棒材和一个价格表,其中pi为长度为i的棒材的价格\\ 确定最大的收入r_n,以及切割钢条的方案 给定一个长度为n的棒材和一个价格表,其中pi为长度为i的棒材的价格确定最大的收入rn,以及切割钢条的方案

    分析

    此题暴力解法,即遍历长度.每个点有两种选择,切 o r or or不切,判断哪种选择最合适即可,时间复杂度 T ( n ) = O ( 2 n ) T(n)=O(2^n) T(n)=O(2n).
    考虑到最优子结构,可利用较短的杆最优收益来确定较长的,此题的状态转移如下:
    r n = m a x ( p n , r 1 + r n − 1 , r 2 + r n − 2 , . . . . . , r n − 1 + r 1 ) r_n=max(p_n,r_1+r_{n-1},r_2+r_{n-2},.....,r_{n-1}+r_1) rn=max(pn,r1+rn1,r2+rn2,.....,rn1+r1)
    简化定义:
    r n = m a x ( p i + r n − i ) r_n=max(p_i+r_{n-i}) rn=max(pi+rni)      1 ≤ i ≤ n 1 \leq i \leq n 1in

    伪代码

    r[0] ← 0
    for j ← 0 to n do
    	q  ← -∞
    	for i  ← 1 to j do
    		q  ← max(q,p[i]+r[j-i])
    	end
    	r[j]  ← q if j != 0
    end
    return r[n]
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9

    这种做法时间复杂度 T ( n ) = O ( n 2 ) T(n)=O(n^2) T(n)=O(n2)
    若是需要保存切割的方案,则需要维护一个 s [ n ] s[n] s[n]数组. s [ n ] 保存前一次切割的长度 s[n]保存前一次切割的长度 s[n]保存前一次切割的长度:

    r[0] ← 0
    for j ← 0 to n do
    	q  ← -∞
    	for i  ← 1 to j do
    		if q < p[i]+r[j-i] then
    			q ← p[i]+r[j-i]
    			s[j] ← i
    		end
    	end
    	r[j]  ← q if j != 0
    end
    while n>0 do
    	Output s[n]
    	n ← n-s[n]
    end
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15

    过程

    在这里插入图片描述

    四、矩阵链乘法

    背景

    p × q 矩阵 a 和 q × r 矩阵 B 的乘积 C = A B 是 p × r 矩阵 p × q矩阵a和q × r矩阵B的乘积C = AB是p × r矩阵 p×q矩阵aq×r矩阵B的乘积C=ABp×r矩阵

    c [ i ] [ j ] = ∑ k = 1 q a [ i ] [ k ] b [ k ] [ j ] c[i][j]=\sum_{k=1}^{q}a[i][k]b[k][j] c[i][j]=k=1qa[i][k]b[k][j] f o r for for 1 ≤ i ≤ p 1 \leq i \leq p 1ip a n d and and 1 ≤ j ≤ r 1 \leq j \leq r 1jr
    时间复杂度:注意 C C C p r pr pr个条目,每个条目需要 O ( q ) O(q) O(q)时间来计算,所以整个过程需要 O ( p q r ) O(pqr) O(pqr)时间

    性质

    矩阵乘法有结合律, A 1 A 2 A 3 = ( A 1 A 2 ) A 3 = A 1 ( A 2 A 3 ) A_1A_2A_3=(A_1A_2)A_3=A_1(A_2A_3) A1A2A3=(A1A2)A3=A1(A2A3)
    因此当计算 A B C ABC ABC时,有两种选择, ( A B ) C = A ( B C ) (AB)C=A(BC) (AB)C=A(BC)
    m u l t [ ( A B ) C ] = p q r + p r s mult[(AB)C]=pqr+prs mult[(AB)C]=pqr+prs
    m u l t [ A ( B C ) ] = q r s + p q s mult[A(BC)]=qrs+pqs mult[A(BC)]=qrs+pqs
    每种选择的时间复杂度不一样
    因此矩阵链乘法需要解决的就是怎么样结合能使得计算的量最小

    分析

    令 A i . . j = A i A i + 1 . . . A j 令A_{i..j}=A_iA_{i+1}...A{j} Ai..j=AiAi+1...Aj,显然, A i . . j A_{i..j} Ai..j P i − 1 × P j P_{i-1}×P_j Pi1×Pj的矩阵
    A i . . j A_{i..j} Ai..j可以表示为 A i . . j = ( A i . . . A k ) ( A k + 1 . . . A j ) = A i . . k A k + 1.. j A_{i..j}=(A_i...A_k)(A_{k+1}...A{j})=A_{i..k}A_{k+1..j} Ai..j=(Ai...Ak)(Ak+1...Aj)=Ai..kAk+1..j

    1 ≤ i ≤ j ≤ n 1 \leq i \leq j \leq n 1ijn时,令 m [ i , j ] m[i,j] m[i,j]表示计算 A i . . j A_{i..j} Ai..j所需的最小乘法次数。最优成本可以用下面的递归定义来描述

    m ( i , j ) = { 0 i f   i = j m i n i ≤ k ≤ j ( m ( i , k ) + m ( k + 1 , j ) + p i − 1 p k p j ) i f   n = 1 m(i,j)=\left\{

    0if i=jminikj(m(i,k)+m(k+1,j)+pi1pkpj)if n=1" role="presentation" style="position: relative;">0if i=jminikj(m(i,k)+m(k+1,j)+pi1pkpj)if n=1
    \right. m(i,j)={0minikj(m(i,k)+m(k+1,j)+pi1pkpj)if i=jif n=1

    注意计算并保存 m [ i , j ] m[i, j] m[i,j]的顺序是,当计算 m [ i , j ] m[i, j] m[i,j]时, m [ i , k ] m[i, k] m[i,k] m [ k + 1 , j ] m[k + 1, j] m[k+1,j]的值已经可用,因此按矩阵链长度的递增顺序计算它们:

    m [ 1 , 2 ] , m [ 2 , 3 ] , m [ 3 , 4 ] , … , m [ n − 3 , n − 2 ] , m [ n − 2 , n − 1 ] , m [ n − 1 , n ] m[1,2], m[2,3], m[3,4],…, m[n-3,n-2], m[n-2,n-1], m[n-1,n] m[1,2],m[2,3],m[3,4],,m[n3,n2],m[n2,n1],m[n1,n]
    m [ 1 , 3 ] , m [ 2 , 4 ] , m [ 3 , 5 ] , … , m [ n − 3 , n − 1 ] , m [ n − 2 , n ] m[1,3], m[2,4], m[3,5],…, m[n-3,n-1], m[n-2,n] m[1,3],m[2,4],m[3,5],,m[n3,n1],m[n2,n]
    m [ 1 , 4 ] , m [ 2 , 5 ] , m [ 3 , 6 ] , … , m [ n − 3 , n ] m[1,4], m[2,5], m[3,6],…, m[n-3,n] m[1,4],m[2,5],m[3,6],,m[n3,n]
    … …
    m [ 1 , n − 1 ] , m [ 2 , n ] m[1,n-1], m[2,n] m[1,n1],m[2,n]
    m [ 1 , n ] m[1,n] m[1,n]

    若需要记录分隔括号路径,需要维护一个二维数组 s [ 1.. n , 1.. n ] s[1..n, 1..n] s[1..n,1..n],里面存储 A i . . j A_{i..j} Ai..j的最优分隔k
    s [ 1 , n ] s[1,n] s[1,n]           ( A 1 . . A s [ 1 , n ] ) ( A s [ 1 , n ] + 1 . . . A n ) (A_1..A_{s[1,n]})(A_{s[1,n]+1}...A{n}) (A1..As[1,n])(As[1,n]+1...An)
    s [ 1 , s [ 1. n ] ] s[1,s[1.n]] s[1,s[1.n]]           ( A 1 . . A s [ 1 , s [ 1. n ] ] ) ( A s [ 1 , s [ 1. n ] ] + 1 . . . A n ) (A_1..A_{s[1,s[1.n]]})(A_{s[1,s[1.n]]+1}...A{n}) (A1..As[1,s[1.n]])(As[1,s[1.n]]+1...An)

    案例

    在这里插入图片描述

    伪代码

    MatrixChain(p,n)
    for i ← 1 to n do
    	m[i,i] ← 0;
    end
    for l ← 2 to n do
    	for i ← 1 to n-l+1 do
    		j ← i+l-1;
    		m[i,j] ← ∞
    		for k ← i to j-1 do
    			q ← m[i,k]+m[k+1,j]+p[i-1]*p[k]*p[j]
    			if q
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18

    三层循环,时间复杂度 T ( n ) = O ( n 3 ) T(n)=O(n^3) T(n)=O(n3)

  • 相关阅读:
    迁移学习(SPI)《Semi-Supervised Domain Adaptation by Similarity based Pseudo-label Injection》
    web service压测工具:siege安装及使用介绍
    bean的自动装配
    计算机硬件的读写速度差异
    Qt Widget 删除之后还会显示 问题
    SpringBoot+ElasticSearch 实现模糊查询,批量CRUD,排序,分页,高亮!
    算法排序6——快速排序(分治思想)
    NSSCTF第12页(3)
    高阶数据结构[3]图的遍历
    非肿瘤纯生信拿下7+,多种机器学习算法,搭配WGCNA。
  • 原文地址:https://blog.csdn.net/ning_xiao_xuan/article/details/134101425