采样器这块基本都是用的k-diffusion,模型用的是stability的原生项目generative-models中的sgm,这点和fooocus不同,fooocus底层依赖comfyui中的models,comfy是用load_state_dict的方式解析的,用的load_checkpoint_guess_config函数,这个函数webui中也有。
webui在paths中导入了generative-models,在sd_model_config中导入了config.sdxl和config.sdxl_refiner两个config,模型使用sgm下的models/diffusion/DiffusionEngine初始化,refiner和base的模型几乎是一致的。
python webui.py --port 6006 --no-half-vae
- webui()->
-
- initialize()->
- initialize_rest()->
- - sd_samplers.py -> set_samplers()->sd_samplers_kdiffusion.py->
- - extensions.py -> list_extensions()
- - initialize_util.py -> restore_config_state_file()
- - sd_models.py -> list_models()
- - localization.py -> list_localizations()
- - scripts.load_scripts() -> scripts.py
- -- scripts_txt2img=ScriptRunner()/scripts_img2img=ScriptRunner()/scripts_postpro=scripts_postprocessing.ScriptPostprocessingRunner()(scripts_postprocessing.py)
- - modelloader.py -> load_upscaler()
- - sd_vae.py -> refresh_vae_list()
- - textual_inversion/textual_inversion.py -> list_textual_inversion_templates()
- - script_callbacks.py -> on_list_optimizers(sd_hijack_optimizations.list_optimizers)
- - sd_hijack.py -> list_optimizers()
- - sd_unet.py -> list_unets()
- - load_model -> shared.py
- - shared_items.py -> reload_hypernetworks() # 这种方式现在几乎不用了
- - ui_extra_networks.py -> initialize()/register_default_pages()
- - extra_networks.py -> initialize()/register_default_extra_networks()
-
- ui.py -> ui.create_ui()
ui.py
一些基础参数的初始化也在这里,关于ui设计在webui中代码还是挺多的
ui_components.py 一些设计的ui组件
shared_items.py 重复的一些item
下面就是一个FormRow:
- elif category == "dimensions":
- with FormRow():
- with gr.Column(elem_id="txt2img_column_size", scale=4):
- width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="txt2img_width")
- height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="txt2img_height")
-
- ....

调用接口入口:
- txt2img_args = dict(
- fn=wrap_gradio_gpu_call(modules.txt2img.txt2img, extra_outputs=[None, '', '']),
- _js="submit",
- inputs=[
- dummy_component,
- toprow.prompt,
- toprow.negative_prompt,
- toprow.ui_styles.dropdown,
- steps,
- sampler_name,
- batch_count,
- batch_size,
- cfg_scale,
- height,
- width,
- enable_hr,
- denoising_strength,
- hr_scale,
- hr_upscaler,
- hr_second_pass_steps,
- hr_resize_x,
- hr_resize_y,
- hr_checkpoint_name,
- hr_sampler_name,
- hr_prompt,
- hr_negative_prompt,
- override_settings,
-
- ] + custom_inputs,
txt2img.py
- p = processing.StableDiffusionProcessingTxt2Img(sd_model,,prompt,negative_prompt,sampler_name,...)->
- processed = processing.process_images(p)
processing.py
- res = process_image_inner(p)
- - sample_ddim = p.sample(conditioning,unconditional_conditioning,seeds,subseeds,subseed_strength,prompts)-> StableDiffusionProcessingTxt2Img.sample()
- -- self.sampler = sd_sampler.create_sampler(self.sampler_name,self.sd_model)
- -- samples = self.samplers.sample(c,uc,image_encoditioning=self.txt2img_image_conditioning(x))
sd_samplers_kdiffusion.py
- sample()->
- samples = self.launch_sampling(steps,lambda:self.func(self.model_wrap_cfg,x,self.sampler_extra_args,...))
- model_rap_cfg:CFGDenoiseKDiffusion->sd_samplers_cfg_denoiser.CFGDenoiser
sd_samplers_common.py
func() = sample_dpmpp_2m ->
repositories/k-diffusion/k_diffusion/sampling.py
- sample_dpmpp_2m()->
- - denoised = model(x,sigmas[i]*s_in,**extra_args)->
- ...
- # 此处就是去噪产生图片的过程
modules/sd_samplers_cfg_denoiser.py model =
- CFGDenoiser()->
- forward(x:2x4x128x128,sigma:[14.6146,14.6146],uncond:SchedulePromptConditionings,cond:MulticondLearnedConditioning,cond_scale:7,s_min_uncond:0,image_cond:2x5x1x1)->
- denoised:2x4x128x128
- # unet预测都被封装在这里
modules/sd_models.py 这块主要是
- reload_model_weights()->
- sd_model = reuse_model_from_already_loaded(sd_model,checkpoint_info,...)
- load_model()
- ....
modules/sd_samplers_common.py
- sd_models.reload_model_weights(refiner_checkpoint_info)
- cfg_denoiser.update_inner_model()->
modules/sd_samplers_cfg_denoiser.py
forward()->