• 计算机视觉顶尖期刊和会议的段子


    CVPR/ICCV/ECCV常见论文:

    1. 我们在imagenet上提升了0.1%!

    2. 研究梯度下降(graduate student descent)是最重要的技术!

    3. 我们很快将释放代码,也可能用很长时间。

    4. 我们是第一个把transformer用到这个任务的!

    5. 我们采用了更多的计算资源,发现很老的一个基线方法是最好的!

    Neurips:

    1. 我提出了一个新的任务,尽管可能没什么实际意义。

    2. 经过精心挑选,我们的结果看上去不错!

    3. 我们提出的方法在我们生成的非公开数据集上很有效!

    ICML:

    1. 我们证明了五年以前大家都知道的东西!

    2. 我们有很复杂的连自己也看不太懂的公式。

    ICLR:

    1. 虽然我们是一个比较新的会议,但是我们仍然在鄙视链顶层。

    2. Open review不代表我们论文质量高,可能只是我们脸皮厚。

    AAAI

    1. 我们的审稿人看不懂我们做了什么,反正通过了。

    2. 我们将已有方法运用到了新数据集,发现它超过了SOTA 1%!

    3. 我们发现把已有模块插入到当前的任务,可以涨点!

    IJCAI

    1. 我们的中奖率只有不到15%,真的不是水会,CCF别踢我。

    2. 不是我们实验不够,六页真的啥都放不下。

    3. 没错,我们的论文如果能投三大会我就投三大会了,投IJCAI实在没办法,日子总还是要过的嘛。发现有很多人看,所以再扩展到一些非CV类会议。

    SIGGRAPH

    1. 只要录取率足够低,圈内都是自己人,把圈外人门关上,焊的死死的。

    2. SIGGRAPH可不是像水会,我们CG就这一个顶会,质量杠杠的。别看了,说的就是你们,视觉三大会一个比一个水。

    3. Incremental的方法都不能发表,至于你要问我什么是incremental,demo视频PS地不好,就是incremental,外人我不告诉他。

    ICRA/IROS

    1. 我们引用了30篇非常相关的论文,没错都是我们的论文。

    2. 我们研究了人与机器人的交互,但是可能没有人能用得到。

    3. 我们将机器学习应用到了已经解决的问题当中,发现它可以达到相似的效果。

    4. 我们也做了SLAM,但是比其他论文好2%。

    5. 我们的sensor很创新,但是你们可能买不起。

    6. 我们又一次在模拟器中取得了完美的效果!

    EMNLP:

    1. 我们在某个特定的任务上取得了提升,但是可能在你的数据上不work。

    2. 你只需要这个简单的trick即可。

    3. 我们的神经网络模拟了人脑思考的过程,可能对你的任务有一丢丢帮助。

    4. 预训练加bert真的很有效。

    5. 我们在大规模数据集上验证了结果,但是你想要复现,可能还需要一些运气。

     

     

  • 相关阅读:
    win10 配置 oh-my-posh
    R语言基于ggplot绘制多条ROC曲线(2)
    AI图书推荐:用ChatGPT按需DIY定制来赚钱
    树莓派4B部署及测试llamafile
    剑指JUC原理-17.CompletableFuture
    es nested object区别
    apk组成和Android的打包流程
    东华码蹄集第21周oj赛(光潮的幻像,分苹果,马走日,码哥猜想)
    Qt定时器
    微信小程序开发笔记
  • 原文地址:https://blog.csdn.net/Angelina_Jolie/article/details/133579080