- dataset_tranform = torchvision.transforms.Compose([
- torchvision.transforms.ToTensor(),
-
- ])
-
- train_set = torchvision.datasets.CIFAR10(root="./train_dataset",train=True,transform=dataset_tranform,download=True)
- test_set = torchvision.datasets.CIFAR10(root="./train_dataset",train=False,transform=dataset_tranform,download=True)
-
- print(test_set[0])
-
- writer = SummaryWriter('p10')
-
- for i in range(10):
- img,target = test_set[i]
- writer.add_image("test_set",img,i)
-
- writer.close()
下载这个CIFAR10这个数据集,通过tensorboard查看一下
-
- test_data = torchvision.datasets.CIFAR10(root="./train_dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
-
- test_loader = DataLoader(dataset=test_data,batch_size=64,shuffle=True,num_workers=0,drop_last=False)
-
- writer = SummaryWriter("dataloader")
- step = 0
-
- for data in test_loader:
- imgs ,targets = data
- writer .add_images("test_data",imgs,step)
- step = step + 1
-
- writer.close()
我们从CIFAR10这个数据集中,每次加载64张图片