这篇ZYNQ之路给大家带来使用AXI总线读写DDR的介绍,此篇博客的意义在于:

上面的图片展示了PS与PL通过接口进行交互的方式,当然除此之外PS和PL还可以通过中断等方式进行一个交互。
AXI的全称叫做“ Advanced eXtensible Interface”即高级可扩展接口,该协议是ARM公司提出的AMBA(Advanced Microcontroller Bus Architecture)3.0协议中最重要的部分,是一种面向高性能、高带宽、低延迟的片内总线。

很容易理解这个总线的重要作用:Soc上各个子模块之间要进行通信,既然是通信那么总得有一个规范和标准,AMBA就是为了这样一个目的而提出的(不要问为啥是由ARM公司提出的,问就是因为ZYNQ使用的是ARM的内核)
AMBA属于不断在发展的一个架构,从前常用的诸如APB,AHB之类的总线标准,但是近些年来都统一称为AXI标准了,目前最新的AMBA标准应该是AXI4,具体包含的总线/接口请看下面的图片:

总结,AXI协议支持以下三种接口:
存储映射(Meamory Map):如果一个协议是存储映射的,那么主机 所发出的会话(无论读或写)就会标明一个地址。这个地址对应于系统存储空间中的一个地址,表明是针对 该存储空间的读写操作。
首先我们来看一下AXI4总线的组成:
AXI4总线共有五个通道:
每个通道的基本拓扑如下:

包含了:时钟信号(上升沿有效)、数据信号,握手信号(VALID和READY)
AXI协议的特色或者说核心就在于:握手信号。
之后我们再来看看五条通道的功能分配:

五条通道互相独立,并且各自都遵循握手信号协议
所谓的突发传输就是只要给定一个起始地址,一次性写入多组数据。在ZYNQ的AXI协议当中,AXI-Full协议支持最高256组数据的突发传输,而AXI-Lite一次只能传输一组数据,AXI-Stream则可以无限制地进行突发传输。
关于突发传输的控制问题,例如突发写时主要使用WLAST信号线进行指示突发传输是否完成,最后一组数据写入完成后WLAST信号拉高(最下面三组是应答信号,由从机发出)。
Vivado可以使用向导创建带有AXI接口的IP模块,点击Tool里的Create and Package New IP即可打开向导。

向导上说:这个导航将被用来完成下面的任务:
我们选择创建一个AXI4的外设:
下面是简单地配置AXI接口的相关信息:
我们主要目的是制作一个AXI接口的IP,因此我们选择编辑这个IP:

下面是我们的重头戏来了:

各位看官请移步Sources栏目,我们可以看到工程里自动多了一个顶层模块和一个实例模块,这是什么意思呢?
这是Xilinx官方给的一个AXI接口的示例,我们设计AXI接口的IP核,如果是主接口,那么我们要有一套操控AXI接口,符合AXI时序的硬件;如果是从接口,那么我们要有能响应AXI接口请求的的一套硬件。
从理论上来说,这些东西都是要咱们自己写的。我们原本应该仔细研读AXI接口中各个信号的时序关系,然后使用状态机让我们的功能IP能够与AXI的从机通信,或者响应主机请求。但是Xilinx官方在创建AXI接口IP的时候提供给了我们一个例子,让我们可以在这个例子的基础上进行改造。这就是向导的力量!
-
- `timescale 1 ns / 1 ps
-
- module myip11_v1_0 #
- (
- // Users to add parameters here
-
- // User parameters ends
- // Do not modify the parameters beyond this line
-
-
- // Parameters of Axi Slave Bus Interface S00_AXI
- parameter integer C_S00_AXI_DATA_WIDTH = 32,
- parameter integer C_S00_AXI_ADDR_WIDTH = 4
- )
- (
- // Users to add ports here
-
- // User ports ends
- // Do not modify the ports beyond this line
-
-
- // Ports of Axi Slave Bus Interface S00_AXI
- input wire s00_axi_aclk,
- input wire s00_axi_aresetn,
- input wire [C_S00_AXI_ADDR_WIDTH-1 : 0] s00_axi_awaddr,
- input wire [2 : 0] s00_axi_awprot,
- input wire s00_axi_awvalid,
- output wire s00_axi_awready,
- input wire [C_S00_AXI_DATA_WIDTH-1 : 0] s00_axi_wdata,
- input wire [(C_S00_AXI_DATA_WIDTH/8)-1 : 0] s00_axi_wstrb,
- input wire s00_axi_wvalid,
- output wire s00_axi_wready,
- output wire [1 : 0] s00_axi_bresp,
- output wire s00_axi_bvalid,
- input wire s00_axi_bready,
- input wire [C_S00_AXI_ADDR_WIDTH-1 : 0] s00_axi_araddr,
- input wire [2 : 0] s00_axi_arprot,
- input wire s00_axi_arvalid,
- output wire s00_axi_arready,
- output wire [C_S00_AXI_DATA_WIDTH-1 : 0] s00_axi_rdata,
- output wire [1 : 0] s00_axi_rresp,
- output wire s00_axi_rvalid,
- input wire s00_axi_rready
- );
- // Instantiation of Axi Bus Interface S00_AXI
- myip11_v1_0_S00_AXI # (
- .C_S_AXI_DATA_WIDTH(C_S00_AXI_DATA_WIDTH),
- .C_S_AXI_ADDR_WIDTH(C_S00_AXI_ADDR_WIDTH)
- ) myip11_v1_0_S00_AXI_inst (
- .S_AXI_ACLK(s00_axi_aclk),
- .S_AXI_ARESETN(s00_axi_aresetn),
- .S_AXI_AWADDR(s00_axi_awaddr),
- .S_AXI_AWPROT(s00_axi_awprot),
- .S_AXI_AWVALID(s00_axi_awvalid),
- .S_AXI_AWREADY(s00_axi_awready),
- .S_AXI_WDATA(s00_axi_wdata),
- .S_AXI_WSTRB(s00_axi_wstrb),
- .S_AXI_WVALID(s00_axi_wvalid),
- .S_AXI_WREADY(s00_axi_wready),
- .S_AXI_BRESP(s00_axi_bresp),
- .S_AXI_BVALID(s00_axi_bvalid),
- .S_AXI_BREADY(s00_axi_bready),
- .S_AXI_ARADDR(s00_axi_araddr),
- .S_AXI_ARPROT(s00_axi_arprot),
- .S_AXI_ARVALID(s00_axi_arvalid),
- .S_AXI_ARREADY(s00_axi_arready),
- .S_AXI_RDATA(s00_axi_rdata),
- .S_AXI_RRESP(s00_axi_rresp),
- .S_AXI_RVALID(s00_axi_rvalid),
- .S_AXI_RREADY(s00_axi_rready)
- );
-
- // Add user logic here
-
- // User logic ends
-
- endmodule
-
- `timescale 1 ns / 1 ps
-
- module myip11_v1_0_S00_AXI #
- (
- // Users to add parameters here
-
- // User parameters ends
- // Do not modify the parameters beyond this line
-
- // Width of S_AXI data bus
- parameter integer C_S_AXI_DATA_WIDTH = 32,
- // Width of S_AXI address bus
- parameter integer C_S_AXI_ADDR_WIDTH = 4
- )
- (
- // Users to add ports here
-
- // User ports ends
- // Do not modify the ports beyond this line
-
- // Global Clock Signal
- input wire S_AXI_ACLK,
- // Global Reset Signal. This Signal is Active LOW
- input wire S_AXI_ARESETN,
- // Write address (issued by master, acceped by Slave)
- input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_AWADDR,
- // Write channel Protection type. This signal indicates the
- // privilege and security level of the transaction, and whether
- // the transaction is a data access or an instruction access.
- input wire [2 : 0] S_AXI_AWPROT,
- // Write address valid. This signal indicates that the master signaling
- // valid write address and control information.
- input wire S_AXI_AWVALID,
- // Write address ready. This signal indicates that the slave is ready
- // to accept an address and associated control signals.
- output wire S_AXI_AWREADY,
- // Write data (issued by master, acceped by Slave)
- input wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_WDATA,
- // Write strobes. This signal indicates which byte lanes hold
- // valid data. There is one write strobe bit for each eight
- // bits of the write data bus.
- input wire [(C_S_AXI_DATA_WIDTH/8)-1 : 0] S_AXI_WSTRB,
- // Write valid. This signal indicates that valid write
- // data and strobes are available.
- input wire S_AXI_WVALID,
- // Write ready. This signal indicates that the slave
- // can accept the write data.
- output wire S_AXI_WREADY,
- // Write response. This signal indicates the status
- // of the write transaction.
- output wire [1 : 0] S_AXI_BRESP,
- // Write response valid. This signal indicates that the channel
- // is signaling a valid write response.
- output wire S_AXI_BVALID,
- // Response ready. This signal indicates that the master
- // can accept a write response.
- input wire S_AXI_BREADY,
- // Read address (issued by master, acceped by Slave)
- input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_ARADDR,
- // Protection type. This signal indicates the privilege
- // and security level of the transaction, and whether the
- // transaction is a data access or an instruction access.
- input wire [2 : 0] S_AXI_ARPROT,
- // Read address valid. This signal indicates that the channel
- // is signaling valid read address and control information.
- input wire S_AXI_ARVALID,
- // Read address ready. This signal indicates that the slave is
- // ready to accept an address and associated control signals.
- output wire S_AXI_ARREADY,
- // Read data (issued by slave)
- output wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_RDATA,
- // Read response. This signal indicates the status of the
- // read transfer.
- output wire [1 : 0] S_AXI_RRESP,
- // Read valid. This signal indicates that the channel is
- // signaling the required read data.
- output wire S_AXI_RVALID,
- // Read ready. This signal indicates that the master can
- // accept the read data and response information.
- input wire S_AXI_RREADY
- );
-
- // AXI4LITE signals
- reg [C_S_AXI_ADDR_WIDTH-1 : 0] axi_awaddr;
- reg axi_awready;
- reg axi_wready;
- reg [1 : 0] axi_bresp;
- reg axi_bvalid;
- reg [C_S_AXI_ADDR_WIDTH-1 : 0] axi_araddr;
- reg axi_arready;
- reg [C_S_AXI_DATA_WIDTH-1 : 0] axi_rdata;
- reg [1 : 0] axi_rresp;
- reg axi_rvalid;
-
- // Example-specific design signals
- // local parameter for addressing 32 bit / 64 bit C_S_AXI_DATA_WIDTH
- // ADDR_LSB is used for addressing 32/64 bit registers/memories
- // ADDR_LSB = 2 for 32 bits (n downto 2)
- // ADDR_LSB = 3 for 64 bits (n downto 3)
- localparam integer ADDR_LSB = (C_S_AXI_DATA_WIDTH/32) + 1;
- localparam integer OPT_MEM_ADDR_BITS = 1;
- //----------------------------------------------
- //-- Signals for user logic register space example
- //------------------------------------------------
- //-- Number of Slave Registers 4
- reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg0;
- reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg1;
- reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg2;
- reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg3;
- wire slv_reg_rden;
- wire slv_reg_wren;
- reg [C_S_AXI_DATA_WIDTH-1:0] reg_data_out;
- integer byte_index;
- reg aw_en;
-
- // I/O Connections assignments
-
- assign S_AXI_AWREADY = axi_awready;
- assign S_AXI_WREADY = axi_wready;
- assign S_AXI_BRESP = axi_bresp;
- assign S_AXI_BVALID = axi_bvalid;
- assign S_AXI_ARREADY = axi_arready;
- assign S_AXI_RDATA = axi_rdata;
- assign S_AXI_RRESP = axi_rresp;
- assign S_AXI_RVALID = axi_rvalid;
- // Implement axi_awready generation
- // axi_awready is asserted for one S_AXI_ACLK clock cycle when both
- // S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_awready is
- // de-asserted when reset is low.
-
- always @( posedge S_AXI_ACLK )
- begin
- if ( S_AXI_ARESETN == 1'b0 )
- begin
- axi_awready <= 1'b0;
- aw_en <= 1'b1;
- end
- else
- begin
- if (~axi_awready && S_AXI_AWVALID && S_AXI_WVALID && aw_en)
- begin
- // slave is ready to accept write address when
- // there is a valid write address and write data
- // on the write address and data bus. This design
- // expects no outstanding transactions.
- axi_awready <= 1'b1;
- aw_en <= 1'b0;
- end
- else if (S_AXI_BREADY && axi_bvalid)
- begin
- aw_en <= 1'b1;
- axi_awready <= 1'b0;
- end
- else
- begin
- axi_awready <= 1'b0;
- end
- end
- end
-
- // Implement axi_awaddr latching
- // This process is used to latch the address when both
- // S_AXI_AWVALID and S_AXI_WVALID are valid.
-
- always @( posedge S_AXI_ACLK )
- begin
- if ( S_AXI_ARESETN == 1'b0 )
- begin
- axi_awaddr <= 0;
- end
- else
- begin
- if (~axi_awready && S_AXI_AWVALID && S_AXI_WVALID && aw_en)
- begin
- // Write Address latching
- axi_awaddr <= S_AXI_AWADDR;
- end
- end
- end
- // Implement axi_wready generation
- // axi_wready is asserted for one S_AXI_ACLK clock cycle when both
- // S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_wready is
- // de-asserted when reset is low.
- always @( posedge S_AXI_ACLK )
- begin
- if ( S_AXI_ARESETN == 1'b0 )
- begin
- axi_wready <= 1'b0;
- end
- else
- begin
- if (~axi_wready && S_AXI_WVALID && S_AXI_AWVALID && aw_en )
- begin
- // slave is ready to accept write data when
- // there is a valid write address and write data
- // on the write address and data bus. This design
- // expects no outstanding transactions.
- axi_wready <= 1'b1;
- end
- else
- begin
- axi_wready <= 1'b0;
- end
- end
- end
- // Implement memory mapped register select and write logic generation
- // The write data is accepted and written to memory mapped registers when
- // axi_awready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted. Write strobes are used to
- // select byte enables of slave registers while writing.
- // These registers are cleared when reset (active low) is applied.
- // Slave register write enable is asserted when valid address and data are available
- // and the slave is ready to accept the write address and write data.
- assign slv_reg_wren = axi_wready && S_AXI_WVALID && axi_awready && S_AXI_AWVALID;
- always @( posedge S_AXI_ACLK )
- begin
- if ( S_AXI_ARESETN == 1'b0 )
- begin
- slv_reg0 <= 0;
- slv_reg1 <= 0;
- slv_reg2 <= 0;
- slv_reg3 <= 0;
- end
- else begin
- if (slv_reg_wren)
- begin
- case ( axi_awaddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] )
- 2'h0:
- for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
- if ( S_AXI_WSTRB[byte_index] == 1 ) begin
- // Respective byte enables are asserted as per write strobes
- // Slave register 0
- slv_reg0[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
- end
- 2'h1:
- for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
- if ( S_AXI_WSTRB[byte_index] == 1 ) begin
- // Respective byte enables are asserted as per write strobes
- // Slave register 1
- slv_reg1[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
- end
- 2'h2:
- for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
- if ( S_AXI_WSTRB[byte_index] == 1 ) begin
- // Respective byte enables are asserted as per write strobes
- // Slave register 2
- slv_reg2[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
- end
- 2'h3:
- for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
- if ( S_AXI_WSTRB[byte_index] == 1 ) begin
- // Respective byte enables are asserted as per write strobes
- // Slave register 3
- slv_reg3[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
- end
- default : begin
- slv_reg0 <= slv_reg0;
- slv_reg1 <= slv_reg1;
- slv_reg2 <= slv_reg2;
- slv_reg3 <= slv_reg3;
- end
- endcase
- end
- end
- end
-
- // Implement write response logic generation
- // The write response and response valid signals are asserted by the slave
- // when axi_wready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted.
- // This marks the acceptance of address and indicates the status of
- // write transaction.
-
- always @( posedge S_AXI_ACLK )
- begin
- if ( S_AXI_ARESETN == 1'b0 )
- begin
- axi_bvalid <= 0;
- axi_bresp <= 2'b0;
- end
- else
- begin
- if (axi_awready && S_AXI_AWVALID && ~axi_bvalid && axi_wready && S_AXI_WVALID)
- begin
- // indicates a valid write response is available
- axi_bvalid <= 1'b1;
- axi_bresp <= 2'b0; // 'OKAY' response
- end // work error responses in future
- else
- begin
- if (S_AXI_BREADY && axi_bvalid)
- //check if bready is asserted while bvalid is high)
- //(there is a possibility that bready is always asserted high)
- begin
- axi_bvalid <= 1'b0;
- end
- end
- end
- end
- // Implement axi_arready generation
- // axi_arready is asserted for one S_AXI_ACLK clock cycle when
- // S_AXI_ARVALID is asserted. axi_awready is
- // de-asserted when reset (active low) is asserted.
- // The read address is also latched when S_AXI_ARVALID is
- // asserted. axi_araddr is reset to zero on reset assertion.
- always @( posedge S_AXI_ACLK )
- begin
- if ( S_AXI_ARESETN == 1'b0 )
- begin
- axi_arready <= 1'b0;
- axi_araddr <= 32'b0;
- end
- else
- begin
- if (~axi_arready && S_AXI_ARVALID)
- begin
- // indicates that the slave has acceped the valid read address
- axi_arready <= 1'b1;
- // Read address latching
- axi_araddr <= S_AXI_ARADDR;
- end
- else
- begin
- axi_arready <= 1'b0;
- end
- end
- end
-
- // Implement axi_arvalid generation
- // axi_rvalid is asserted for one S_AXI_ACLK clock cycle when both
- // S_AXI_ARVALID and axi_arready are asserted. The slave registers
- // data are available on the axi_rdata bus at this instance. The
- // assertion of axi_rvalid marks the validity of read data on the
- // bus and axi_rresp indicates the status of read transaction.axi_rvalid
- // is deasserted on reset (active low). axi_rresp and axi_rdata are
- // cleared to zero on reset (active low).
- always @( posedge S_AXI_ACLK )
- begin
- if ( S_AXI_ARESETN == 1'b0 )
- begin
- axi_rvalid <= 0;
- axi_rresp <= 0;
- end
- else
- begin
- if (axi_arready && S_AXI_ARVALID && ~axi_rvalid)
- begin
- // Valid read data is available at the read data bus
- axi_rvalid <= 1'b1;
- axi_rresp <= 2'b0; // 'OKAY' response
- end
- else if (axi_rvalid && S_AXI_RREADY)
- begin
- // Read data is accepted by the master
- axi_rvalid <= 1'b0;
- end
- end
- end
-
- // Implement memory mapped register select and read logic generation
- // Slave register read enable is asserted when valid address is available
- // and the slave is ready to accept the read address.
- assign slv_reg_rden = axi_arready & S_AXI_ARVALID & ~axi_rvalid;
- always @(*)
- begin
- // Address decoding for reading registers
- case ( axi_araddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] )
- 2'h0 : reg_data_out <= slv_reg0;
- 2'h1 : reg_data_out <= slv_reg1;
- 2'h2 : reg_data_out <= slv_reg2;
- 2'h3 : reg_data_out <= slv_reg3;
- default : reg_data_out <= 0;
- endcase
- end
-
- // Output register or memory read data
- always @( posedge S_AXI_ACLK )
- begin
- if ( S_AXI_ARESETN == 1'b0 )
- begin
- axi_rdata <= 0;
- end
- else
- begin
- // When there is a valid read address (S_AXI_ARVALID) with
- // acceptance of read address by the slave (axi_arready),
- // output the read dada
- if (slv_reg_rden)
- begin
- axi_rdata <= reg_data_out; // register read data
- end
- end
- end
- // Add user logic here
- // User logic ends
- endmodule
从机的代码改造相对主机更加简单,但是想要真正学会AXI协议的IP制作,研读示例代码是必须要去做的事情。
从机代码改造的逻辑在于寄存器:

如图,主机会往这些寄存器里写入数据,那么这些寄存器就可以直接和我们功能模块的端口进行对接,以实现参数传递的功能。
主机写数据--->接口实例--->寄存器-->自定义功能模块 (数据流向)
下一节,我想做一期 AXI-Master示例的代码解读。