L
(
p
,
u
,
t
u
,
υ
)
=
L
c
l
s
(
p
,
u
)
+
λ
[
u
≥
1
]
L
l
o
c
(
t
u
,
υ
)
L(p, u, t^u, \upsilon ) = L_{cls}(p, u) + \lambda [u \ge 1] L_{loc}(t^u, \upsilon )
L(p,u,tu,υ)=Lcls(p,u)+λ[u≥1]Lloc(tu,υ);
分类器 Loss:
L
c
l
s
(
p
,
u
)
=
−
l
o
g
p
u
L_{cls}(p, u) = -logp_{u}
Lcls(p,u)=−logpu:
每个 RoI 的概率分布:
p
=
(
p
0
,
…
,
p
K
)
p = (p_0, …, p_K)
p=(p0,…,pK);
Bounding box 回归 L1 Loss:
L
l
o
c
(
t
u
,
υ
)
=
∑
i
∈
{
x
,
y
,
w
,
h
}
s
m
o
o
t
h
L
1
(
t
i
u
−
υ
i
)
L_{loc}(t^u, \upsilon ) = \sum_{i\in \{x, y, w, h\}}smooth_{L1}(t_i^u - \upsilon_i)
Lloc(tu,υ)=∑i∈{x,y,w,h}smoothL1(tiu−υi),
s
m
o
o
t
h
L
1
(
x
)
=
{
0.5
x
2
i
f
∣
x
∣
<
1
∣
x
∣
−
0.5
o
t
h
e
r
w
i
s
e
smooth_{L1}(x) = \left\{