目录


Inputs
-------------------------
name:ImageTensor:0
tensor:UInt8[1, -1, -1, 3]
---------------------------------------------------------------
Outputs
-------------------------
name:SemanticPredictions:0
tensor:Int64[1, -1, -1]
---------------------------------------------------------------
VS2022
.net framework 4.8
OpenCvSharp 4.8
Microsoft.ML.OnnxRuntime 1.16.2

图片缩放
int oldwidth = image.Cols;
int oldheight = image.Rows;
int maxEdge = Math.Max(image.Rows, image.Cols);
float ratio = 1.0f * modelSize / maxEdge;
int newHeight = (int)(image.Rows * ratio);
int newWidth = (int)(image.Cols * ratio);
Mat resize_image = image.Resize(new OpenCvSharp.Size(newWidth, newHeight));
创建Tensor
input_tensor = new DenseTensor
for (int y = 0; y < resize_image.Height; y++)
{
for (int x = 0; x < resize_image.Width; x++)
{
input_tensor[0, y, x, 2] = resize_image.At
input_tensor[0, y, x, 1] = resize_image.At
input_tensor[0, y, x, 0] = resize_image.At
}
}
- using Microsoft.ML.OnnxRuntime;
- using Microsoft.ML.OnnxRuntime.Tensors;
- using OpenCvSharp;
- using System;
- using System.Collections.Generic;
- using System.Drawing;
- using System.Drawing.Imaging;
- using System.Linq;
- using System.Windows.Forms;
- using UMapx.Core;
- using UMapx.Imaging;
-
- namespace PortraitModeFilter_模糊背景
- {
- public partial class frmMain : Form
- {
- public frmMain()
- {
- InitializeComponent();
- }
-
- string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
- string image_path = "";
- string startupPath;
- DateTime dt1 = DateTime.Now;
- DateTime dt2 = DateTime.Now;
- string model_path;
- Mat image;
- Bitmap src;
- Bitmap mask;
- int modelSize = 512;
-
- SessionOptions options;
- InferenceSession onnx_session;
- Tensor<byte> input_tensor;
- List<NamedOnnxValue> input_ontainer;
- IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
- DisposableNamedOnnxValue[] results_onnxvalue;
- Tensor<long> result_tensors;
- long[] result_array;
-
- double strength = 1;// 0 到 1
-
- OpenFileDialog ofd;
- private void button1_Click(object sender, EventArgs e)
- {
- if (ofd.ShowDialog() != DialogResult.OK) return;
- pictureBox1.Image = null;
- image_path = ofd.FileName;
- src = new Bitmap(image_path);
- pictureBox1.Image = src;
- textBox1.Text = "";
- image = new Mat(image_path);
- pictureBox2.Image = null;
- trackBar1.Enabled = false;
- }
-
- private void Form2_Load(object sender, EventArgs e)
- {
- trackBar1.Enabled = false;
-
- startupPath = Application.StartupPath;
-
- ofd = new OpenFileDialog();
- ofd.Filter = fileFilter;
-
- model_path = startupPath + "\\deeplabv3_mnv2_pascal_train_aug.onnx";
-
- //创建输出会话,用于输出模型读取信息
- options = new SessionOptions();
- options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
- // 设置为CPU上运行
- options.AppendExecutionProvider_CPU(0);
-
- // 创建推理模型类,读取本地模型文件
- onnx_session = new InferenceSession(model_path, options);
-
- // 创建输入容器
- input_ontainer = new List<NamedOnnxValue>();
-
- // 创建输入容器
- input_ontainer = new List<NamedOnnxValue>();
- }
-
- private void button2_Click(object sender, EventArgs e)
- {
- if (image_path == "")
- {
- return;
- }
-
- textBox1.Text = "生成中……";
- pictureBox2.Image = null;
-
- Application.DoEvents();
-
- //缩放图片大小
- int oldwidth = image.Cols;
- int oldheight = image.Rows;
- int maxEdge = Math.Max(image.Rows, image.Cols);
- float ratio = 1.0f * modelSize / maxEdge;
- int newHeight = (int)(image.Rows * ratio);
- int newWidth = (int)(image.Cols * ratio);
- Mat resize_image = image.Resize(new OpenCvSharp.Size(newWidth, newHeight));
-
- input_tensor = new DenseTensor<byte>(new[] { 1, newHeight, newWidth, 3 });
-
- // 输入Tensor
- for (int y = 0; y < resize_image.Height; y++)
- {
- for (int x = 0; x < resize_image.Width; x++)
- {
- input_tensor[0, y, x, 2] = resize_image.At<Vec3b>(y, x)[0];
- input_tensor[0, y, x, 1] = resize_image.At<Vec3b>(y, x)[1];
- input_tensor[0, y, x, 0] = resize_image.At<Vec3b>(y, x)[2];
- }
- }
-
- //将 input_tensor 放入一个输入参数的容器,并指定名称
- input_ontainer.Add(NamedOnnxValue.CreateFromTensor(onnx_session.InputNames[0].ToString(), input_tensor));
-
- dt1 = DateTime.Now;
- //运行 Inference 并获取结果
- result_infer = onnx_session.Run(input_ontainer);
- dt2 = DateTime.Now;
-
- //将输出结果转为DisposableNamedOnnxValue数组
- results_onnxvalue = result_infer.ToArray();
-
- //读取第一个节点输出并转为Tensor数据
- result_tensors = results_onnxvalue[0].AsTensor<Int64>();
-
- result_array = result_tensors.ToArray();
-
- //得到掩码图
- mask = SegmentationMap(result_array, newWidth, newHeight);
-
- mask = new Bitmap(mask, new System.Drawing.Size(oldwidth, oldheight));
-
- trackBar1.Enabled = true;
-
- //模糊背景
- pictureBox2.Image = Filter(src, mask);
-
- textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
-
- }
-
- /// <summary>
- /// Converts an RGB tensor array to a color image.
- /// </summary>
- /// <param name="tensor">RGBA tensor array</param>
- /// <param name="width">Bitmap width</param>
- /// <param name="height">Bitmap height</param>
- public unsafe Bitmap SegmentationMap(long[] tensor, int width, int height)
- {
- Bitmap Data = new Bitmap(width, height);
- BitmapData bmData = Data.LockBits(new Rectangle(0, 0, width, height), ImageLockMode.ReadWrite, PixelFormat.Format24bppRgb);
-
- int stride = bmData.Stride;
- byte* p = (byte*)bmData.Scan0.ToPointer();
- int pos = 0;
-
- for (int j = 0; j < height; j++)
- {
- int k, jstride = j * stride;
-
- for (int i = 0; i < width; i++, pos++)
- {
- k = jstride + i * 3;
-
- var z = (tensor[pos] == 15) ? (byte)255 : (byte)0;
-
- // rgb
- p[k + 2] = z;
- p[k + 1] = z;
- p[k + 0] = z;
- }
- }
-
- Data.UnlockBits(bmData);
-
- return Data;
- }
-
- private void button3_Click(object sender, EventArgs e)
- {
- if (pictureBox2.Image == null)
- {
- return;
- }
- Bitmap output = new Bitmap(pictureBox2.Image);
- var sdf = new SaveFileDialog();
- sdf.Title = "保存";
- sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp|Images (*.emf)|*.emf|Images (*.exif)|*.exif|Images (*.gif)|*.gif|Images (*.ico)|*.ico|Images (*.tiff)|*.tiff|Images (*.wmf)|*.wmf";
- if (sdf.ShowDialog() == DialogResult.OK)
- {
- switch (sdf.FilterIndex)
- {
- case 1:
- {
- output.Save(sdf.FileName, ImageFormat.Jpeg);
- break;
- }
- case 2:
- {
- output.Save(sdf.FileName, ImageFormat.Png);
- break;
- }
- case 3:
- {
- output.Save(sdf.FileName, ImageFormat.Bmp);
- break;
- }
- case 4:
- {
- output.Save(sdf.FileName, ImageFormat.Emf);
- break;
- }
- case 5:
- {
- output.Save(sdf.FileName, ImageFormat.Exif);
- break;
- }
- case 6:
- {
- output.Save(sdf.FileName, ImageFormat.Gif);
- break;
- }
- case 7:
- {
- output.Save(sdf.FileName, ImageFormat.Icon);
- break;
- }
- case 8:
- {
- output.Save(sdf.FileName, ImageFormat.Tiff);
- break;
- }
- case 9:
- {
- output.Save(sdf.FileName, ImageFormat.Wmf);
- break;
- }
- }
- MessageBox.Show("保存成功,位置:" + sdf.FileName);
- }
- }
-
- private void trackBar1_Scroll(object sender, EventArgs e)
- {
- strength = trackBar1.Value / 100.0;
- label1.Text = $"Strenght: {strength}";
- pictureBox2.Image = Filter(src, mask);
- }
-
- BoxBlur _boxBlur = new BoxBlur();
- AlphaChannelFilter _alphaChannelFilter = new AlphaChannelFilter();
- Merge _merge = new Merge(0, 0, 255);
-
- Bitmap Filter(Bitmap image, Bitmap mask)
- {
- int radius = (int)(strength * 2 * ((Math.Max(image.Height, image.Width) / 100) + 1));
-
- // deep person lab
- var alphaMask = (Bitmap)src.Clone();
- var portrait = (Bitmap)src.Clone();
- var segmentantionMask = (Bitmap)mask.Clone();
-
- // gaussian blur approximation
- _boxBlur.Size = new SizeInt(radius, radius);
- _boxBlur.Apply(portrait);
- _boxBlur.Apply(segmentantionMask);
-
- _boxBlur.Size = new SizeInt(radius / 2, radius / 2);
- _boxBlur.Apply(portrait);
- _boxBlur.Apply(segmentantionMask);
-
- // merging images
- _alphaChannelFilter.Apply(alphaMask, segmentantionMask);
- _merge.Apply(portrait, alphaMask);
- alphaMask.Dispose();
- segmentantionMask.Dispose();
-
- return portrait;
- }
- }
- }