• 微分中值定理之罗尔中值定理


    罗尔中值定理

    若函数 f ( x ) f(x) f(x)满足

    • 在闭区间 [ a , b ] [a,b] [a,b]内连续
    • 在开区间 ( a , b ) (a,b) (a,b)内可导
    • f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b)

    则存在 ξ ∈ ( a , b ) \xi\in (a,b) ξ(a,b),使得 f ′ ( ξ ) = 0 f'(\xi)=0 f(ξ)=0


    例1

    设函数 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续,在 ( a , b ) (a,b) (a,b)内二阶可导,且有 f ( a ) = f ( c ) = f ( b ) f(a)=f(c)=f(b) f(a)=f(c)=f(b),其中 a < c < b . aa<c<b.
    求证: ∃ ξ ∈ ( a , b ) , f ′ ′ ( ξ ) = 0. \exist \xi \in(a,b),f''(\xi)=0. ξ(a,b),f(ξ)=0.

    解:
    ∵ f ( x ) \qquad \because f(x) f(x) [ a , c ] [a,c] [a,c]上连续,在 ( a , c ) (a,c) (a,c)内可导, f ( a ) = f ( c ) f(a)=f(c) f(a)=f(c)

    ∴ \qquad \therefore 由罗尔定理得 ∃ m ∈ ( a , c ) \exist m\in(a,c) m(a,c),使得 f ′ ( m ) = 0 f'(m)=0 f(m)=0

    ∵ f ( x ) \qquad \because f(x) f(x) [ c , b ] [c,b] [c,b]上连续,在 ( c , b ) (c,b) (c,b)内可导, f ( c ) = f ( b ) f(c)=f(b) f(c)=f(b)

    ∴ \qquad \therefore 由罗尔定理得 ∃ n ∈ ( c , b ) \exist n\in(c,b) n(c,b),使得 f ′ ( n ) = 0 f'(n)=0 f(n)=0

    ∵ f ′ ( x ) \qquad \because f'(x) f(x) [ m , n ] [m,n] [m,n]上连续,在 ( m , n ) (m,n) (m,n)内可导, f ′ ( m ) = f ′ ( n ) = 0 f'(m)=f'(n)=0 f(m)=f(n)=0

    ∴ \qquad \therefore 由罗尔定理得 ∃ ξ ∈ ( m , n ) \exist \xi\in(m,n) ξ(m,n),使得 f ′ ′ ( ξ ) = 0 f''(\xi)=0 f(ξ)=0

    \qquad ∃ ξ ∈ ( a , b ) , f ′ ′ ( ξ ) = 0. \exist \xi \in(a,b),f''(\xi)=0. ξ(a,b),f(ξ)=0.


    例2

    设函数 f ( x ) f(x) f(x) [ 0 , 1 ] [0,1] [0,1]上连续,在 ( 0 , 1 ) (0,1) (0,1)内可导,且 f ( 0 ) = 1 f(0)=1 f(0)=1 f ( 1 ) = 0 f(1)=0 f(1)=0
    求证: ∃ ξ ∈ ( 0 , 1 ) \exist \xi \in(0,1) ξ(0,1)使得 f ′ ( ξ ) = − f ( ξ ) ξ f'(\xi)=-\dfrac{f(\xi)}{\xi} f(ξ)=ξf(ξ)

    证:
    \qquad F ( x ) = x f ( x ) F(x)=xf(x) F(x)=xf(x)

    F ( 0 ) = 0 × f ( 0 ) = 0 , F ( 1 ) = 1 × f ( 1 ) = 0 \qquad F(0)=0\times f(0)=0,F(1)=1\times f(1)=0 F(0)=0×f(0)=0,F(1)=1×f(1)=0

    ∵ F ( x ) \qquad \because F(x) F(x) [ 0 , 1 ] [0,1] [0,1]上连续, F ( x ) F(x) F(x) ( 0 , 1 ) (0,1) (0,1)内可导, F ( 0 ) = F ( 1 ) F(0)=F(1) F(0)=F(1)

    ∴ \qquad \therefore 由罗尔定理得 ∃ ξ ∈ ( 0 , 1 ) \exist \xi\in(0,1) ξ(0,1),使得 F ′ ( ξ ) = 0 F'(\xi)=0 F(ξ)=0

    \qquad f ( ξ ) + ξ f ′ ( ξ ) = 0 f(\xi)+\xi f'(\xi)=0 f(ξ)+ξf(ξ)=0,得证 f ′ ( ξ ) = − f ( ξ ) ξ f'(\xi)=-\dfrac{f(\xi)}{\xi} f(ξ)=ξf(ξ)

  • 相关阅读:
    Centos下安装 oracle11g 博客2
    (49)STM32——照相机实验
    90%的软件测试从业者,努力的方向都错了...你呢?
    学信息系统项目管理师第4版系列14_沟通管理
    Spring Webflux 后端处理前端请求的 4 种方式
    Manim 中文显示问题报错解决办法
    Keil C51与Keil MDK的兼容安装
    去中心遇见混币器
    素食者进行低碳饮食的最佳方法
    Linux界的老古董
  • 原文地址:https://blog.csdn.net/tanjunming2020/article/details/127828824