• JAVA架构之路(三)


    HashMap的源码赏析。

    HashMap是Java中的一种数据结构,它实现了Map接口,用于存储键值对映射关系。HashMap是非线程安全的,它允许使用null键和null值。

    HashMap的工作原理是基于哈希表实现的,通过哈希函数将键转化为数组的索引来存储和访问数据。HashMap使用散列算法将键映射到桶中,每个桶中存储着键值对。

    HashMap具有以下特性:

    1. 无序性:HashMap中的元素没有顺序,每次遍历的结果可能不同。
    2. 允许null键和null值:HashMap允许使用null键和null值,但只能有一个null键和一个null值。
    3. 非线程安全:HashMap是非线程安全的,如果多个线程同时修改HashMap,可能会导致数据不一致。
    4. 存储空间:HashMap使用哈希表来存储数据,需要额外的存储空间来记录键值对与桶的映射关系。

    使用HashMap时需要注意以下几点:

    1. 在遍历HashMap时,如果需要修改HashMap(例如添加、删除元素),则必须使用迭代器(Iterator)的remove()方法来删除元素,否则会抛出ConcurrentModificationException异常。
    2. 如果需要多个线程同时读写HashMap,可以使用Collections.synchronizedMap()方法将HashMap转换成线程安全的版本。
    3. 在处理大数据量时,需要注意HashMap的容量和加载因子(load factor),如果加载因子设置得太高,可能会导致哈希冲突增加,影响性能。如果设置得太低,可能会导致空间浪费过多。

    HashMap的实现原来是单向链表加数组的实现。

    核心代码

    我们看到的put方法:

    实现细节:

    我们看get方法:

     源码:

    1. /*
    2. * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
    3. * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
    4. *
    5. *
    6. *
    7. *
    8. *
    9. *
    10. *
    11. *
    12. *
    13. *
    14. *
    15. *
    16. *
    17. *
    18. *
    19. *
    20. *
    21. *
    22. *
    23. *
    24. */
    25. package java.util;
    26. import java.io.IOException;
    27. import java.io.InvalidObjectException;
    28. import java.io.Serializable;
    29. import java.lang.reflect.ParameterizedType;
    30. import java.lang.reflect.Type;
    31. import java.util.function.BiConsumer;
    32. import java.util.function.BiFunction;
    33. import java.util.function.Consumer;
    34. import java.util.function.Function;
    35. /**
    36. * Hash table based implementation of the Map interface. This
    37. * implementation provides all of the optional map operations, and permits
    38. * null values and the null key. (The HashMap
    39. * class is roughly equivalent to Hashtable, except that it is
    40. * unsynchronized and permits nulls.) This class makes no guarantees as to
    41. * the order of the map; in particular, it does not guarantee that the order
    42. * will remain constant over time.
    43. *
    44. *

      This implementation provides constant-time performance for the basic

    45. * operations (get and put), assuming the hash function
    46. * disperses the elements properly among the buckets. Iteration over
    47. * collection views requires time proportional to the "capacity" of the
    48. * HashMap instance (the number of buckets) plus its size (the number
    49. * of key-value mappings). Thus, it's very important not to set the initial
    50. * capacity too high (or the load factor too low) if iteration performance is
    51. * important.
    52. *
    53. *

      An instance of HashMap has two parameters that affect its

    54. * performance: initial capacity and load factor. The
    55. * capacity is the number of buckets in the hash table, and the initial
    56. * capacity is simply the capacity at the time the hash table is created. The
    57. * load factor is a measure of how full the hash table is allowed to
    58. * get before its capacity is automatically increased. When the number of
    59. * entries in the hash table exceeds the product of the load factor and the
    60. * current capacity, the hash table is rehashed (that is, internal data
    61. * structures are rebuilt) so that the hash table has approximately twice the
    62. * number of buckets.
    63. *
    64. *

      As a general rule, the default load factor (.75) offers a good

    65. * tradeoff between time and space costs. Higher values decrease the
    66. * space overhead but increase the lookup cost (reflected in most of
    67. * the operations of the HashMap class, including
    68. * get and put). The expected number of entries in
    69. * the map and its load factor should be taken into account when
    70. * setting its initial capacity, so as to minimize the number of
    71. * rehash operations. If the initial capacity is greater than the
    72. * maximum number of entries divided by the load factor, no rehash
    73. * operations will ever occur.
    74. *
    75. *

      If many mappings are to be stored in a HashMap

    76. * instance, creating it with a sufficiently large capacity will allow
    77. * the mappings to be stored more efficiently than letting it perform
    78. * automatic rehashing as needed to grow the table. Note that using
    79. * many keys with the same {@code hashCode()} is a sure way to slow
    80. * down performance of any hash table. To ameliorate impact, when keys
    81. * are {@link Comparable}, this class may use comparison order among
    82. * keys to help break ties.
    83. *
    84. *

      Note that this implementation is not synchronized.

    85. * If multiple threads access a hash map concurrently, and at least one of
    86. * the threads modifies the map structurally, it must be
    87. * synchronized externally. (A structural modification is any operation
    88. * that adds or deletes one or more mappings; merely changing the value
    89. * associated with a key that an instance already contains is not a
    90. * structural modification.) This is typically accomplished by
    91. * synchronizing on some object that naturally encapsulates the map.
    92. *
    93. * If no such object exists, the map should be "wrapped" using the
    94. * {@link Collections#synchronizedMap Collections.synchronizedMap}
    95. * method. This is best done at creation time, to prevent accidental
    96. * unsynchronized access to the map:
    97. * Map m = Collections.synchronizedMap(new HashMap(...));
  • *
  • *

    The iterators returned by all of this class's "collection view methods"

  • * are fail-fast: if the map is structurally modified at any time after
  • * the iterator is created, in any way except through the iterator's own
  • * remove method, the iterator will throw a
  • * {@link ConcurrentModificationException}. Thus, in the face of concurrent
  • * modification, the iterator fails quickly and cleanly, rather than risking
  • * arbitrary, non-deterministic behavior at an undetermined time in the
  • * future.
  • *
  • *

    Note that the fail-fast behavior of an iterator cannot be guaranteed

  • * as it is, generally speaking, impossible to make any hard guarantees in the
  • * presence of unsynchronized concurrent modification. Fail-fast iterators
  • * throw ConcurrentModificationException on a best-effort basis.
  • * Therefore, it would be wrong to write a program that depended on this
  • * exception for its correctness: the fail-fast behavior of iterators
  • * should be used only to detect bugs.
  • *
  • *

    This class is a member of the

  • *
  • * @param the type of keys maintained by this map
  • * @param the type of mapped values
  • *
  • * @author Doug Lea
  • * @author Josh Bloch
  • * @author Arthur van Hoff
  • * @author Neal Gafter
  • * @see Object#hashCode()
  • * @see Collection
  • * @see Map
  • * @see TreeMap
  • * @see Hashtable
  • * @since 1.2
  • */
  • public class HashMap extends AbstractMap
  • implements Map, Cloneable, Serializable {
  • private static final long serialVersionUID = 362498820763181265L;
  • /*
  • * Implementation notes.
  • *
  • * This map usually acts as a binned (bucketed) hash table, but
  • * when bins get too large, they are transformed into bins of
  • * TreeNodes, each structured similarly to those in
  • * java.util.TreeMap. Most methods try to use normal bins, but
  • * relay to TreeNode methods when applicable (simply by checking
  • * instanceof a node). Bins of TreeNodes may be traversed and
  • * used like any others, but additionally support faster lookup
  • * when overpopulated. However, since the vast majority of bins in
  • * normal use are not overpopulated, checking for existence of
  • * tree bins may be delayed in the course of table methods.
  • *
  • * Tree bins (i.e., bins whose elements are all TreeNodes) are
  • * ordered primarily by hashCode, but in the case of ties, if two
  • * elements are of the same "class C implements Comparable",
  • * type then their compareTo method is used for ordering. (We
  • * conservatively check generic types via reflection to validate
  • * this -- see method comparableClassFor). The added complexity
  • * of tree bins is worthwhile in providing worst-case O(log n)
  • * operations when keys either have distinct hashes or are
  • * orderable, Thus, performance degrades gracefully under
  • * accidental or malicious usages in which hashCode() methods
  • * return values that are poorly distributed, as well as those in
  • * which many keys share a hashCode, so long as they are also
  • * Comparable. (If neither of these apply, we may waste about a
  • * factor of two in time and space compared to taking no
  • * precautions. But the only known cases stem from poor user
  • * programming practices that are already so slow that this makes
  • * little difference.)
  • *
  • * Because TreeNodes are about twice the size of regular nodes, we
  • * use them only when bins contain enough nodes to warrant use
  • * (see TREEIFY_THRESHOLD). And when they become too small (due to
  • * removal or resizing) they are converted back to plain bins. In
  • * usages with well-distributed user hashCodes, tree bins are
  • * rarely used. Ideally, under random hashCodes, the frequency of
  • * nodes in bins follows a Poisson distribution
  • * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
  • * parameter of about 0.5 on average for the default resizing
  • * threshold of 0.75, although with a large variance because of
  • * resizing granularity. Ignoring variance, the expected
  • * occurrences of list size k are (exp(-0.5) * pow(0.5, k) /
  • * factorial(k)). The first values are:
  • *
  • * 0: 0.60653066
  • * 1: 0.30326533
  • * 2: 0.07581633
  • * 3: 0.01263606
  • * 4: 0.00157952
  • * 5: 0.00015795
  • * 6: 0.00001316
  • * 7: 0.00000094
  • * 8: 0.00000006
  • * more: less than 1 in ten million
  • *
  • * The root of a tree bin is normally its first node. However,
  • * sometimes (currently only upon Iterator.remove), the root might
  • * be elsewhere, but can be recovered following parent links
  • * (method TreeNode.root()).
  • *
  • * All applicable internal methods accept a hash code as an
  • * argument (as normally supplied from a public method), allowing
  • * them to call each other without recomputing user hashCodes.
  • * Most internal methods also accept a "tab" argument, that is
  • * normally the current table, but may be a new or old one when
  • * resizing or converting.
  • *
  • * When bin lists are treeified, split, or untreeified, we keep
  • * them in the same relative access/traversal order (i.e., field
  • * Node.next) to better preserve locality, and to slightly
  • * simplify handling of splits and traversals that invoke
  • * iterator.remove. When using comparators on insertion, to keep a
  • * total ordering (or as close as is required here) across
  • * rebalancings, we compare classes and identityHashCodes as
  • * tie-breakers.
  • *
  • * The use and transitions among plain vs tree modes is
  • * complicated by the existence of subclass LinkedHashMap. See
  • * below for hook methods defined to be invoked upon insertion,
  • * removal and access that allow LinkedHashMap internals to
  • * otherwise remain independent of these mechanics. (This also
  • * requires that a map instance be passed to some utility methods
  • * that may create new nodes.)
  • *
  • * The concurrent-programming-like SSA-based coding style helps
  • * avoid aliasing errors amid all of the twisty pointer operations.
  • */
  • /**
  • * The default initial capacity - MUST be a power of two.
  • */
  • static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
  • /**
  • * The maximum capacity, used if a higher value is implicitly specified
  • * by either of the constructors with arguments.
  • * MUST be a power of two <= 1<<30.
  • */
  • static final int MAXIMUM_CAPACITY = 1 << 30;
  • /**
  • * The load factor used when none specified in constructor.
  • */
  • static final float DEFAULT_LOAD_FACTOR = 0.75f;
  • /**
  • * The bin count threshold for using a tree rather than list for a
  • * bin. Bins are converted to trees when adding an element to a
  • * bin with at least this many nodes. The value must be greater
  • * than 2 and should be at least 8 to mesh with assumptions in
  • * tree removal about conversion back to plain bins upon
  • * shrinkage.
  • */
  • static final int TREEIFY_THRESHOLD = 8;
  • /**
  • * The bin count threshold for untreeifying a (split) bin during a
  • * resize operation. Should be less than TREEIFY_THRESHOLD, and at
  • * most 6 to mesh with shrinkage detection under removal.
  • */
  • static final int UNTREEIFY_THRESHOLD = 6;
  • /**
  • * The smallest table capacity for which bins may be treeified.
  • * (Otherwise the table is resized if too many nodes in a bin.)
  • * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
  • * between resizing and treeification thresholds.
  • */
  • static final int MIN_TREEIFY_CAPACITY = 64;
  • /**
  • * Basic hash bin node, used for most entries. (See below for
  • * TreeNode subclass, and in LinkedHashMap for its Entry subclass.)
  • */
  • static class Node implements Map.Entry {
  • final int hash;
  • final K key;
  • V value;
  • Node next;
  • Node(int hash, K key, V value, Node next) {
  • this.hash = hash;
  • this.key = key;
  • this.value = value;
  • this.next = next;
  • }
  • public final K getKey() { return key; }
  • public final V getValue() { return value; }
  • public final String toString() { return key + "=" + value; }
  • public final int hashCode() {
  • return Objects.hashCode(key) ^ Objects.hashCode(value);
  • }
  • public final V setValue(V newValue) {
  • V oldValue = value;
  • value = newValue;
  • return oldValue;
  • }
  • public final boolean equals(Object o) {
  • if (o == this)
  • return true;
  • if (o instanceof Map.Entry) {
  • Map.Entry e = (Map.Entry)o;
  • if (Objects.equals(key, e.getKey()) &&
  • Objects.equals(value, e.getValue()))
  • return true;
  • }
  • return false;
  • }
  • }
  • /* ---------------- Static utilities -------------- */
  • /**
  • * Computes key.hashCode() and spreads (XORs) higher bits of hash
  • * to lower. Because the table uses power-of-two masking, sets of
  • * hashes that vary only in bits above the current mask will
  • * always collide. (Among known examples are sets of Float keys
  • * holding consecutive whole numbers in small tables.) So we
  • * apply a transform that spreads the impact of higher bits
  • * downward. There is a tradeoff between speed, utility, and
  • * quality of bit-spreading. Because many common sets of hashes
  • * are already reasonably distributed (so don't benefit from
  • * spreading), and because we use trees to handle large sets of
  • * collisions in bins, we just XOR some shifted bits in the
  • * cheapest possible way to reduce systematic lossage, as well as
  • * to incorporate impact of the highest bits that would otherwise
  • * never be used in index calculations because of table bounds.
  • */
  • static final int hash(Object key) {
  • int h;
  • return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
  • }
  • /**
  • * Returns x's Class if it is of the form "class C implements
  • * Comparable", else null.
  • */
  • static Class comparableClassFor(Object x) {
  • if (x instanceof Comparable) {
  • Class c; Type[] ts, as; Type t; ParameterizedType p;
  • if ((c = x.getClass()) == String.class) // bypass checks
  • return c;
  • if ((ts = c.getGenericInterfaces()) != null) {
  • for (int i = 0; i < ts.length; ++i) {
  • if (((t = ts[i]) instanceof ParameterizedType) &&
  • ((p = (ParameterizedType)t).getRawType() ==
  • Comparable.class) &&
  • (as = p.getActualTypeArguments()) != null &&
  • as.length == 1 && as[0] == c) // type arg is c
  • return c;
  • }
  • }
  • }
  • return null;
  • }
  • /**
  • * Returns k.compareTo(x) if x matches kc (k's screened comparable
  • * class), else 0.
  • */
  • @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
  • static int compareComparables(Class kc, Object k, Object x) {
  • return (x == null || x.getClass() != kc ? 0 :
  • ((Comparable)k).compareTo(x));
  • }
  • /**
  • * Returns a power of two size for the given target capacity.
  • */
  • static final int tableSizeFor(int cap) {
  • int n = cap - 1;
  • n |= n >>> 1;
  • n |= n >>> 2;
  • n |= n >>> 4;
  • n |= n >>> 8;
  • n |= n >>> 16;
  • return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
  • }
  • /* ---------------- Fields -------------- */
  • /**
  • * The table, initialized on first use, and resized as
  • * necessary. When allocated, length is always a power of two.
  • * (We also tolerate length zero in some operations to allow
  • * bootstrapping mechanics that are currently not needed.)
  • */
  • transient Node[] table;
  • /**
  • * Holds cached entrySet(). Note that AbstractMap fields are used
  • * for keySet() and values().
  • */
  • transient Set> entrySet;
  • /**
  • * The number of key-value mappings contained in this map.
  • */
  • transient int size;
  • /**
  • * The number of times this HashMap has been structurally modified
  • * Structural modifications are those that change the number of mappings in
  • * the HashMap or otherwise modify its internal structure (e.g.,
  • * rehash). This field is used to make iterators on Collection-views of
  • * the HashMap fail-fast. (See ConcurrentModificationException).
  • */
  • transient int modCount;
  • /**
  • * The next size value at which to resize (capacity * load factor).
  • *
  • * @serial
  • */
  • // (The javadoc description is true upon serialization.
  • // Additionally, if the table array has not been allocated, this
  • // field holds the initial array capacity, or zero signifying
  • // DEFAULT_INITIAL_CAPACITY.)
  • int threshold;
  • /**
  • * The load factor for the hash table.
  • *
  • * @serial
  • */
  • final float loadFactor;
  • /* ---------------- Public operations -------------- */
  • /**
  • * Constructs an empty HashMap with the specified initial
  • * capacity and load factor.
  • *
  • * @param initialCapacity the initial capacity
  • * @param loadFactor the load factor
  • * @throws IllegalArgumentException if the initial capacity is negative
  • * or the load factor is nonpositive
  • */
  • public HashMap(int initialCapacity, float loadFactor) {
  • if (initialCapacity < 0)
  • throw new IllegalArgumentException("Illegal initial capacity: " +
  • initialCapacity);
  • if (initialCapacity > MAXIMUM_CAPACITY)
  • initialCapacity = MAXIMUM_CAPACITY;
  • if (loadFactor <= 0 || Float.isNaN(loadFactor))
  • throw new IllegalArgumentException("Illegal load factor: " +
  • loadFactor);
  • this.loadFactor = loadFactor;
  • this.threshold = tableSizeFor(initialCapacity);
  • }
  • /**
  • * Constructs an empty HashMap with the specified initial
  • * capacity and the default load factor (0.75).
  • *
  • * @param initialCapacity the initial capacity.
  • * @throws IllegalArgumentException if the initial capacity is negative.
  • */
  • public HashMap(int initialCapacity) {
  • this(initialCapacity, DEFAULT_LOAD_FACTOR);
  • }
  • /**
  • * Constructs an empty HashMap with the default initial capacity
  • * (16) and the default load factor (0.75).
  • */
  • public HashMap() {
  • this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
  • }
  • /**
  • * Constructs a new HashMap with the same mappings as the
  • * specified Map. The HashMap is created with
  • * default load factor (0.75) and an initial capacity sufficient to
  • * hold the mappings in the specified Map.
  • *
  • * @param m the map whose mappings are to be placed in this map
  • * @throws NullPointerException if the specified map is null
  • */
  • public HashMap(Map m) {
  • this.loadFactor = DEFAULT_LOAD_FACTOR;
  • putMapEntries(m, false);
  • }
  • /**
  • * Implements Map.putAll and Map constructor
  • *
  • * @param m the map
  • * @param evict false when initially constructing this map, else
  • * true (relayed to method afterNodeInsertion).
  • */
  • final void putMapEntries(Map m, boolean evict) {
  • int s = m.size();
  • if (s > 0) {
  • if (table == null) { // pre-size
  • float ft = ((float)s / loadFactor) + 1.0F;
  • int t = ((ft < (float)MAXIMUM_CAPACITY) ?
  • (int)ft : MAXIMUM_CAPACITY);
  • if (t > threshold)
  • threshold = tableSizeFor(t);
  • }
  • else if (s > threshold)
  • resize();
  • for (Map.Entryextends K, ? extends V> e : m.entrySet()) {
  • K key = e.getKey();
  • V value = e.getValue();
  • putVal(hash(key), key, value, false, evict);
  • }
  • }
  • }
  • /**
  • * Returns the number of key-value mappings in this map.
  • *
  • * @return the number of key-value mappings in this map
  • */
  • public int size() {
  • return size;
  • }
  • /**
  • * Returns true if this map contains no key-value mappings.
  • *
  • * @return true if this map contains no key-value mappings
  • */
  • public boolean isEmpty() {
  • return size == 0;
  • }
  • /**
  • * Returns the value to which the specified key is mapped,
  • * or {@code null} if this map contains no mapping for the key.
  • *
  • *

    More formally, if this map contains a mapping from a key

  • * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
  • * key.equals(k))}, then this method returns {@code v}; otherwise
  • * it returns {@code null}. (There can be at most one such mapping.)
  • *
  • *

    A return value of {@code null} does not necessarily

  • * indicate that the map contains no mapping for the key; it's also
  • * possible that the map explicitly maps the key to {@code null}.
  • * The {@link #containsKey containsKey} operation may be used to
  • * distinguish these two cases.
  • *
  • * @see #put(Object, Object)
  • */
  • public V get(Object key) {
  • Node e;
  • return (e = getNode(hash(key), key)) == null ? null : e.value;
  • }
  • /**
  • * Implements Map.get and related methods
  • *
  • * @param hash hash for key
  • * @param key the key
  • * @return the node, or null if none
  • */
  • final Node getNode(int hash, Object key) {
  • Node[] tab; Node first, e; int n; K k;
  • if ((tab = table) != null && (n = tab.length) > 0 &&
  • (first = tab[(n - 1) & hash]) != null) {
  • if (first.hash == hash && // always check first node
  • ((k = first.key) == key || (key != null && key.equals(k))))
  • return first;
  • if ((e = first.next) != null) {
  • if (first instanceof TreeNode)
  • return ((TreeNode)first).getTreeNode(hash, key);
  • do {
  • if (e.hash == hash &&
  • ((k = e.key) == key || (key != null && key.equals(k))))
  • return e;
  • } while ((e = e.next) != null);
  • }
  • }
  • return null;
  • }
  • /**
  • * Returns true if this map contains a mapping for the
  • * specified key.
  • *
  • * @param key The key whose presence in this map is to be tested
  • * @return true if this map contains a mapping for the specified
  • * key.
  • */
  • public boolean containsKey(Object key) {
  • return getNode(hash(key), key) != null;
  • }
  • /**
  • * Associates the specified value with the specified key in this map.
  • * If the map previously contained a mapping for the key, the old
  • * value is replaced.
  • *
  • * @param key key with which the specified value is to be associated
  • * @param value value to be associated with the specified key
  • * @return the previous value associated with key, or
  • * null if there was no mapping for key.
  • * (A null return can also indicate that the map
  • * previously associated null with key.)
  • */
  • public V put(K key, V value) {
  • return putVal(hash(key), key, value, false, true);
  • }
  • /**
  • * Implements Map.put and related methods
  • *
  • * @param hash hash for key
  • * @param key the key
  • * @param value the value to put
  • * @param onlyIfAbsent if true, don't change existing value
  • * @param evict if false, the table is in creation mode.
  • * @return previous value, or null if none
  • */
  • final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
  • boolean evict) {
  • Node[] tab; Node p; int n, i;
  • if ((tab = table) == null || (n = tab.length) == 0)
  • n = (tab = resize()).length;
  • if ((p = tab[i = (n - 1) & hash]) == null)
  • tab[i] = newNode(hash, key, value, null);
  • else {
  • Node e; K k;
  • if (p.hash == hash &&
  • ((k = p.key) == key || (key != null && key.equals(k))))
  • e = p;
  • else if (p instanceof TreeNode)
  • e = ((TreeNode)p).putTreeVal(this, tab, hash, key, value);
  • else {
  • for (int binCount = 0; ; ++binCount) {
  • if ((e = p.next) == null) {
  • p.next = newNode(hash, key, value, null);
  • if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
  • treeifyBin(tab, hash);
  • break;
  • }
  • if (e.hash == hash &&
  • ((k = e.key) == key || (key != null && key.equals(k))))
  • break;
  • p = e;
  • }
  • }
  • if (e != null) { // existing mapping for key
  • V oldValue = e.value;
  • if (!onlyIfAbsent || oldValue == null)
  • e.value = value;
  • afterNodeAccess(e);
  • return oldValue;
  • }
  • }
  • ++modCount;
  • if (++size > threshold)
  • resize();
  • afterNodeInsertion(evict);
  • return null;
  • }
  • /**
  • * Initializes or doubles table size. If null, allocates in
  • * accord with initial capacity target held in field threshold.
  • * Otherwise, because we are using power-of-two expansion, the
  • * elements from each bin must either stay at same index, or move
  • * with a power of two offset in the new table.
  • *
  • * @return the table
  • */
  • final Node[] resize() {
  • Node[] oldTab = table;
  • int oldCap = (oldTab == null) ? 0 : oldTab.length;
  • int oldThr = threshold;
  • int newCap, newThr = 0;
  • if (oldCap > 0) {
  • if (oldCap >= MAXIMUM_CAPACITY) {
  • threshold = Integer.MAX_VALUE;
  • return oldTab;
  • }
  • else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
  • oldCap >= DEFAULT_INITIAL_CAPACITY)
  • newThr = oldThr << 1; // double threshold
  • }
  • else if (oldThr > 0) // initial capacity was placed in threshold
  • newCap = oldThr;
  • else { // zero initial threshold signifies using defaults
  • newCap = DEFAULT_INITIAL_CAPACITY;
  • newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
  • }
  • if (newThr == 0) {
  • float ft = (float)newCap * loadFactor;
  • newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
  • (int)ft : Integer.MAX_VALUE);
  • }
  • threshold = newThr;
  • @SuppressWarnings({"rawtypes","unchecked"})
  • Node[] newTab = (Node[])new Node[newCap];
  • table = newTab;
  • if (oldTab != null) {
  • for (int j = 0; j < oldCap; ++j) {
  • Node e;
  • if ((e = oldTab[j]) != null) {
  • oldTab[j] = null;
  • if (e.next == null)
  • newTab[e.hash & (newCap - 1)] = e;
  • else if (e instanceof TreeNode)
  • ((TreeNode)e).split(this, newTab, j, oldCap);
  • else { // preserve order
  • Node loHead = null, loTail = null;
  • Node hiHead = null, hiTail = null;
  • Node next;
  • do {
  • next = e.next;
  • if ((e.hash & oldCap) == 0) {
  • if (loTail == null)
  • loHead = e;
  • else
  • loTail.next = e;
  • loTail = e;
  • }
  • else {
  • if (hiTail == null)
  • hiHead = e;
  • else
  • hiTail.next = e;
  • hiTail = e;
  • }
  • } while ((e = next) != null);
  • if (loTail != null) {
  • loTail.next = null;
  • newTab[j] = loHead;
  • }
  • if (hiTail != null) {
  • hiTail.next = null;
  • newTab[j + oldCap] = hiHead;
  • }
  • }
  • }
  • }
  • }
  • return newTab;
  • }
  • /**
  • * Replaces all linked nodes in bin at index for given hash unless
  • * table is too small, in which case resizes instead.
  • */
  • final void treeifyBin(Node[] tab, int hash) {
  • int n, index; Node e;
  • if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
  • resize();
  • else if ((e = tab[index = (n - 1) & hash]) != null) {
  • TreeNode hd = null, tl = null;
  • do {
  • TreeNode p = replacementTreeNode(e, null);
  • if (tl == null)
  • hd = p;
  • else {
  • p.prev = tl;
  • tl.next = p;
  • }
  • tl = p;
  • } while ((e = e.next) != null);
  • if ((tab[index] = hd) != null)
  • hd.treeify(tab);
  • }
  • }
  • /**
  • * Copies all of the mappings from the specified map to this map.
  • * These mappings will replace any mappings that this map had for
  • * any of the keys currently in the specified map.
  • *
  • * @param m mappings to be stored in this map
  • * @throws NullPointerException if the specified map is null
  • */
  • public void putAll(Map m) {
  • putMapEntries(m, true);
  • }
  • /**
  • * Removes the mapping for the specified key from this map if present.
  • *
  • * @param key key whose mapping is to be removed from the map
  • * @return the previous value associated with key, or
  • * null if there was no mapping for key.
  • * (A null return can also indicate that the map
  • * previously associated null with key.)
  • */
  • public V remove(Object key) {
  • Node e;
  • return (e = removeNode(hash(key), key, null, false, true)) == null ?
  • null : e.value;
  • }
  • /**
  • * Implements Map.remove and related methods
  • *
  • * @param hash hash for key
  • * @param key the key
  • * @param value the value to match if matchValue, else ignored
  • * @param matchValue if true only remove if value is equal
  • * @param movable if false do not move other nodes while removing
  • * @return the node, or null if none
  • */
  • final Node removeNode(int hash, Object key, Object value,
  • boolean matchValue, boolean movable) {
  • Node[] tab; Node p; int n, index;
  • if ((tab = table) != null && (n = tab.length) > 0 &&
  • (p = tab[index = (n - 1) & hash]) != null) {
  • Node node = null, e; K k; V v;
  • if (p.hash == hash &&
  • ((k = p.key) == key || (key != null && key.equals(k))))
  • node = p;
  • else if ((e = p.next) != null) {
  • if (p instanceof TreeNode)
  • node = ((TreeNode)p).getTreeNode(hash, key);
  • else {
  • do {
  • if (e.hash == hash &&
  • ((k = e.key) == key ||
  • (key != null && key.equals(k)))) {
  • node = e;
  • break;
  • }
  • p = e;
  • } while ((e = e.next) != null);
  • }
  • }
  • if (node != null && (!matchValue || (v = node.value) == value ||
  • (value != null && value.equals(v)))) {
  • if (node instanceof TreeNode)
  • ((TreeNode)node).removeTreeNode(this, tab, movable);
  • else if (node == p)
  • tab[index] = node.next;
  • else
  • p.next = node.next;
  • ++modCount;
  • --size;
  • afterNodeRemoval(node);
  • return node;
  • }
  • }
  • return null;
  • }
  • /**
  • * Removes all of the mappings from this map.
  • * The map will be empty after this call returns.
  • */
  • public void clear() {
  • Node[] tab;
  • modCount++;
  • if ((tab = table) != null && size > 0) {
  • size = 0;
  • for (int i = 0; i < tab.length; ++i)
  • tab[i] = null;
  • }
  • }
  • /**
  • * Returns true if this map maps one or more keys to the
  • * specified value.
  • *
  • * @param value value whose presence in this map is to be tested
  • * @return true if this map maps one or more keys to the
  • * specified value
  • */
  • public boolean containsValue(Object value) {
  • Node[] tab; V v;
  • if ((tab = table) != null && size > 0) {
  • for (int i = 0; i < tab.length; ++i) {
  • for (Node e = tab[i]; e != null; e = e.next) {
  • if ((v = e.value) == value ||
  • (value != null && value.equals(v)))
  • return true;
  • }
  • }
  • }
  • return false;
  • }
  • /**
  • * Returns a {@link Set} view of the keys contained in this map.
  • * The set is backed by the map, so changes to the map are
  • * reflected in the set, and vice-versa. If the map is modified
  • * while an iteration over the set is in progress (except through
  • * the iterator's own remove operation), the results of
  • * the iteration are undefined. The set supports element removal,
  • * which removes the corresponding mapping from the map, via the
  • * Iterator.remove, Set.remove,
  • * removeAll, retainAll, and clear
  • * operations. It does not support the add or addAll
  • * operations.
  • *
  • * @return a set view of the keys contained in this map
  • */
  • public Set keySet() {
  • Set ks = keySet;
  • if (ks == null) {
  • ks = new KeySet();
  • keySet = ks;
  • }
  • return ks;
  • }
  • final class KeySet extends AbstractSet {
  • public final int size() { return size; }
  • public final void clear() { HashMap.this.clear(); }
  • public final Iterator iterator() { return new KeyIterator(); }
  • public final boolean contains(Object o) { return containsKey(o); }
  • public final boolean remove(Object key) {
  • return removeNode(hash(key), key, null, false, true) != null;
  • }
  • public final Spliterator spliterator() {
  • return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0);
  • }
  • public final void forEach(Consumersuper K> action) {
  • Node[] tab;
  • if (action == null)
  • throw new NullPointerException();
  • if (size > 0 && (tab = table) != null) {
  • int mc = modCount;
  • for (int i = 0; i < tab.length; ++i) {
  • for (Node e = tab[i]; e != null; e = e.next)
  • action.accept(e.key);
  • }
  • if (modCount != mc)
  • throw new ConcurrentModificationException();
  • }
  • }
  • }
  • /**
  • * Returns a {@link Collection} view of the values contained in this map.
  • * The collection is backed by the map, so changes to the map are
  • * reflected in the collection, and vice-versa. If the map is
  • * modified while an iteration over the collection is in progress
  • * (except through the iterator's own remove operation),
  • * the results of the iteration are undefined. The collection
  • * supports element removal, which removes the corresponding
  • * mapping from the map, via the Iterator.remove,
  • * Collection.remove, removeAll,
  • * retainAll and clear operations. It does not
  • * support the add or addAll operations.
  • *
  • * @return a view of the values contained in this map
  • */
  • public Collection values() {
  • Collection vs = values;
  • if (vs == null) {
  • vs = new Values();
  • values = vs;
  • }
  • return vs;
  • }
  • final class Values extends AbstractCollection {
  • public final int size() { return size; }
  • public final void clear() { HashMap.this.clear(); }
  • public final Iterator iterator() { return new ValueIterator(); }
  • public final boolean contains(Object o) { return containsValue(o); }
  • public final Spliterator spliterator() {
  • return new ValueSpliterator<>(HashMap.this, 0, -1, 0, 0);
  • }
  • public final void forEach(Consumersuper V> action) {
  • Node[] tab;
  • if (action == null)
  • throw new NullPointerException();
  • if (size > 0 && (tab = table) != null) {
  • int mc = modCount;
  • for (int i = 0; i < tab.length; ++i) {
  • for (Node e = tab[i]; e != null; e = e.next)
  • action.accept(e.value);
  • }
  • if (modCount != mc)
  • throw new ConcurrentModificationException();
  • }
  • }
  • }
  • /**
  • * Returns a {@link Set} view of the mappings contained in this map.
  • * The set is backed by the map, so changes to the map are
  • * reflected in the set, and vice-versa. If the map is modified
  • * while an iteration over the set is in progress (except through
  • * the iterator's own remove operation, or through the
  • * setValue operation on a map entry returned by the
  • * iterator) the results of the iteration are undefined. The set
  • * supports element removal, which removes the corresponding
  • * mapping from the map, via the Iterator.remove,
  • * Set.remove, removeAll, retainAll and
  • * clear operations. It does not support the
  • * add or addAll operations.
  • *
  • * @return a set view of the mappings contained in this map
  • */
  • public Set> entrySet() {
  • Set> es;
  • return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;
  • }
  • final class EntrySet extends AbstractSet> {
  • public final int size() { return size; }
  • public final void clear() { HashMap.this.clear(); }
  • public final Iterator> iterator() {
  • return new EntryIterator();
  • }
  • public final boolean contains(Object o) {
  • if (!(o instanceof Map.Entry))
  • return false;
  • Map.Entry e = (Map.Entry) o;
  • Object key = e.getKey();
  • Node candidate = getNode(hash(key), key);
  • return candidate != null && candidate.equals(e);
  • }
  • public final boolean remove(Object o) {
  • if (o instanceof Map.Entry) {
  • Map.Entry e = (Map.Entry) o;
  • Object key = e.getKey();
  • Object value = e.getValue();
  • return removeNode(hash(key), key, value, true, true) != null;
  • }
  • return false;
  • }
  • public final Spliterator> spliterator() {
  • return new EntrySpliterator<>(HashMap.this, 0, -1, 0, 0);
  • }
  • public final void forEach(Consumersuper Map.Entry> action) {
  • Node[] tab;
  • if (action == null)
  • throw new NullPointerException();
  • if (size > 0 && (tab = table) != null) {
  • int mc = modCount;
  • for (int i = 0; i < tab.length; ++i) {
  • for (Node e = tab[i]; e != null; e = e.next)
  • action.accept(e);
  • }
  • if (modCount != mc)
  • throw new ConcurrentModificationException();
  • }
  • }
  • }
  • // Overrides of JDK8 Map extension methods
  • @Override
  • public V getOrDefault(Object key, V defaultValue) {
  • Node e;
  • return (e = getNode(hash(key), key)) == null ? defaultValue : e.value;
  • }
  • @Override
  • public V putIfAbsent(K key, V value) {
  • return putVal(hash(key), key, value, true, true);
  • }
  • @Override
  • public boolean remove(Object key, Object value) {
  • return removeNode(hash(key), key, value, true, true) != null;
  • }
  • @Override
  • public boolean replace(K key, V oldValue, V newValue) {
  • Node e; V v;
  • if ((e = getNode(hash(key), key)) != null &&
  • ((v = e.value) == oldValue || (v != null && v.equals(oldValue)))) {
  • e.value = newValue;
  • afterNodeAccess(e);
  • return true;
  • }
  • return false;
  • }
  • @Override
  • public V replace(K key, V value) {
  • Node e;
  • if ((e = getNode(hash(key), key)) != null) {
  • V oldValue = e.value;
  • e.value = value;
  • afterNodeAccess(e);
  • return oldValue;
  • }
  • return null;
  • }
  • @Override
  • public V computeIfAbsent(K key,
  • Functionsuper K, ? extends V> mappingFunction) {
  • if (mappingFunction == null)
  • throw new NullPointerException();
  • int hash = hash(key);
  • Node[] tab; Node first; int n, i;
  • int binCount = 0;
  • TreeNode t = null;
  • Node old = null;
  • if (size > threshold || (tab = table) == null ||
  • (n = tab.length) == 0)
  • n = (tab = resize()).length;
  • if ((first = tab[i = (n - 1) & hash]) != null) {
  • if (first instanceof TreeNode)
  • old = (t = (TreeNode)first).getTreeNode(hash, key);
  • else {
  • Node e = first; K k;
  • do {
  • if (e.hash == hash &&
  • ((k = e.key) == key || (key != null && key.equals(k)))) {
  • old = e;
  • break;
  • }
  • ++binCount;
  • } while ((e = e.next) != null);
  • }
  • V oldValue;
  • if (old != null && (oldValue = old.value) != null) {
  • afterNodeAccess(old);
  • return oldValue;
  • }
  • }
  • V v = mappingFunction.apply(key);
  • if (v == null) {
  • return null;
  • } else if (old != null) {
  • old.value = v;
  • afterNodeAccess(old);
  • return v;
  • }
  • else if (t != null)
  • t.putTreeVal(this, tab, hash, key, v);
  • else {
  • tab[i] = newNode(hash, key, v, first);
  • if (binCount >= TREEIFY_THRESHOLD - 1)
  • treeifyBin(tab, hash);
  • }
  • ++modCount;
  • ++size;
  • afterNodeInsertion(true);
  • return v;
  • }
  • public V computeIfPresent(K key,
  • BiFunctionsuper K, ? super V, ? extends V> remappingFunction) {
  • if (remappingFunction == null)
  • throw new NullPointerException();
  • Node e; V oldValue;
  • int hash = hash(key);
  • if ((e = getNode(hash, key)) != null &&
  • (oldValue = e.value) != null) {
  • V v = remappingFunction.apply(key, oldValue);
  • if (v != null) {
  • e.value = v;
  • afterNodeAccess(e);
  • return v;
  • }
  • else
  • removeNode(hash, key, null, false, true);
  • }
  • return null;
  • }
  • @Override
  • public V compute(K key,
  • BiFunctionsuper K, ? super V, ? extends V> remappingFunction) {
  • if (remappingFunction == null)
  • throw new NullPointerException();
  • int hash = hash(key);
  • Node[] tab; Node first; int n, i;
  • int binCount = 0;
  • TreeNode t = null;
  • Node old = null;
  • if (size > threshold || (tab = table) == null ||
  • (n = tab.length) == 0)
  • n = (tab = resize()).length;
  • if ((first = tab[i = (n - 1) & hash]) != null) {
  • if (first instanceof TreeNode)
  • old = (t = (TreeNode)first).getTreeNode(hash, key);
  • else {
  • Node e = first; K k;
  • do {
  • if (e.hash == hash &&
  • ((k = e.key) == key || (key != null && key.equals(k)))) {
  • old = e;
  • break;
  • }
  • ++binCount;
  • } while ((e = e.next) != null);
  • }
  • }
  • V oldValue = (old == null) ? null : old.value;
  • V v = remappingFunction.apply(key, oldValue);
  • if (old != null) {
  • if (v != null) {
  • old.value = v;
  • afterNodeAccess(old);
  • }
  • else
  • removeNode(hash, key, null, false, true);
  • }
  • else if (v != null) {
  • if (t != null)
  • t.putTreeVal(this, tab, hash, key, v);
  • else {
  • tab[i] = newNode(hash, key, v, first);
  • if (binCount >= TREEIFY_THRESHOLD - 1)
  • treeifyBin(tab, hash);
  • }
  • ++modCount;
  • ++size;
  • afterNodeInsertion(true);
  • }
  • return v;
  • }
  • @Override
  • public V merge(K key, V value,
  • BiFunctionsuper V, ? super V, ? extends V> remappingFunction) {
  • if (value == null)
  • throw new NullPointerException();
  • if (remappingFunction == null)
  • throw new NullPointerException();
  • int hash = hash(key);
  • Node[] tab; Node first; int n, i;
  • int binCount = 0;
  • TreeNode t = null;
  • Node old = null;
  • if (size > threshold || (tab = table) == null ||
  • (n = tab.length) == 0)
  • n = (tab = resize()).length;
  • if ((first = tab[i = (n - 1) & hash]) != null) {
  • if (first instanceof TreeNode)
  • old = (t = (TreeNode)first).getTreeNode(hash, key);
  • else {
  • Node e = first; K k;
  • do {
  • if (e.hash == hash &&
  • ((k = e.key) == key || (key != null && key.equals(k)))) {
  • old = e;
  • break;
  • }
  • ++binCount;
  • } while ((e = e.next) != null);
  • }
  • }
  • if (old != null) {
  • V v;
  • if (old.value != null)
  • v = remappingFunction.apply(old.value, value);
  • else
  • v = value;
  • if (v != null) {
  • old.value = v;
  • afterNodeAccess(old);
  • }
  • else
  • removeNode(hash, key, null, false, true);
  • return v;
  • }
  • if (value != null) {
  • if (t != null)
  • t.putTreeVal(this, tab, hash, key, value);
  • else {
  • tab[i] = newNode(hash, key, value, first);
  • if (binCount >= TREEIFY_THRESHOLD - 1)
  • treeifyBin(tab, hash);
  • }
  • ++modCount;
  • ++size;
  • afterNodeInsertion(true);
  • }
  • return value;
  • }
  • @Override
  • public void forEach(BiConsumersuper K, ? super V> action) {
  • Node[] tab;
  • if (action == null)
  • throw new NullPointerException();
  • if (size > 0 && (tab = table) != null) {
  • int mc = modCount;
  • for (int i = 0; i < tab.length; ++i) {
  • for (Node e = tab[i]; e != null; e = e.next)
  • action.accept(e.key, e.value);
  • }
  • if (modCount != mc)
  • throw new ConcurrentModificationException();
  • }
  • }
  • @Override
  • public void replaceAll(BiFunctionsuper K, ? super V, ? extends V> function) {
  • Node[] tab;
  • if (function == null)
  • throw new NullPointerException();
  • if (size > 0 && (tab = table) != null) {
  • int mc = modCount;
  • for (int i = 0; i < tab.length; ++i) {
  • for (Node e = tab[i]; e != null; e = e.next) {
  • e.value = function.apply(e.key, e.value);
  • }
  • }
  • if (modCount != mc)
  • throw new ConcurrentModificationException();
  • }
  • }
  • /* ------------------------------------------------------------ */
  • // Cloning and serialization
  • /**
  • * Returns a shallow copy of this HashMap instance: the keys and
  • * values themselves are not cloned.
  • *
  • * @return a shallow copy of this map
  • */
  • @SuppressWarnings("unchecked")
  • @Override
  • public Object clone() {
  • HashMap result;
  • try {
  • result = (HashMap)super.clone();
  • } catch (CloneNotSupportedException e) {
  • // this shouldn't happen, since we are Cloneable
  • throw new InternalError(e);
  • }
  • result.reinitialize();
  • result.putMapEntries(this, false);
  • return result;
  • }
  • // These methods are also used when serializing HashSets
  • final float loadFactor() { return loadFactor; }
  • final int capacity() {
  • return (table != null) ? table.length :
  • (threshold > 0) ? threshold :
  • DEFAULT_INITIAL_CAPACITY;
  • }
  • /**
  • * Save the state of the HashMap instance to a stream (i.e.,
  • * serialize it).
  • *
  • * @serialData The capacity of the HashMap (the length of the
  • * bucket array) is emitted (int), followed by the
  • * size (an int, the number of key-value
  • * mappings), followed by the key (Object) and value (Object)
  • * for each key-value mapping. The key-value mappings are
  • * emitted in no particular order.
  • */
  • private void writeObject(java.io.ObjectOutputStream s)
  • throws IOException {
  • int buckets = capacity();
  • // Write out the threshold, loadfactor, and any hidden stuff
  • s.defaultWriteObject();
  • s.writeInt(buckets);
  • s.writeInt(size);
  • internalWriteEntries(s);
  • }
  • /**
  • * Reconstitute the {@code HashMap} instance from a stream (i.e.,
  • * deserialize it).
  • */
  • private void readObject(java.io.ObjectInputStream s)
  • throws IOException, ClassNotFoundException {
  • // Read in the threshold (ignored), loadfactor, and any hidden stuff
  • s.defaultReadObject();
  • reinitialize();
  • if (loadFactor <= 0 || Float.isNaN(loadFactor))
  • throw new InvalidObjectException("Illegal load factor: " +
  • loadFactor);
  • s.readInt(); // Read and ignore number of buckets
  • int mappings = s.readInt(); // Read number of mappings (size)
  • if (mappings < 0)
  • throw new InvalidObjectException("Illegal mappings count: " +
  • mappings);
  • else if (mappings > 0) { // (if zero, use defaults)
  • // Size the table using given load factor only if within
  • // range of 0.25...4.0
  • float lf = Math.min(Math.max(0.25f, loadFactor), 4.0f);
  • float fc = (float)mappings / lf + 1.0f;
  • int cap = ((fc < DEFAULT_INITIAL_CAPACITY) ?
  • DEFAULT_INITIAL_CAPACITY :
  • (fc >= MAXIMUM_CAPACITY) ?
  • MAXIMUM_CAPACITY :
  • tableSizeFor((int)fc));
  • float ft = (float)cap * lf;
  • threshold = ((cap < MAXIMUM_CAPACITY && ft < MAXIMUM_CAPACITY) ?
  • (int)ft : Integer.MAX_VALUE);
  • @SuppressWarnings({"rawtypes","unchecked"})
  • Node[] tab = (Node[])new Node[cap];
  • table = tab;
  • // Read the keys and values, and put the mappings in the HashMap
  • for (int i = 0; i < mappings; i++) {
  • @SuppressWarnings("unchecked")
  • K key = (K) s.readObject();
  • @SuppressWarnings("unchecked")
  • V value = (V) s.readObject();
  • putVal(hash(key), key, value, false, false);
  • }
  • }
  • }
  • /* ------------------------------------------------------------ */
  • // iterators
  • abstract class HashIterator {
  • Node next; // next entry to return
  • Node current; // current entry
  • int expectedModCount; // for fast-fail
  • int index; // current slot
  • HashIterator() {
  • expectedModCount = modCount;
  • Node[] t = table;
  • current = next = null;
  • index = 0;
  • if (t != null && size > 0) { // advance to first entry
  • do {} while (index < t.length && (next = t[index++]) == null);
  • }
  • }
  • public final boolean hasNext() {
  • return next != null;
  • }
  • final Node nextNode() {
  • Node[] t;
  • Node e = next;
  • if (modCount != expectedModCount)
  • throw new ConcurrentModificationException();
  • if (e == null)
  • throw new NoSuchElementException();
  • if ((next = (current = e).next) == null && (t = table) != null) {
  • do {} while (index < t.length && (next = t[index++]) == null);
  • }
  • return e;
  • }
  • public final void remove() {
  • Node p = current;
  • if (p == null)
  • throw new IllegalStateException();
  • if (modCount != expectedModCount)
  • throw new ConcurrentModificationException();
  • current = null;
  • K key = p.key;
  • removeNode(hash(key), key, null, false, false);
  • expectedModCount = modCount;
  • }
  • }
  • final class KeyIterator extends HashIterator
  • implements Iterator {
  • public final K next() { return nextNode().key; }
  • }
  • final class ValueIterator extends HashIterator
  • implements Iterator {
  • public final V next() { return nextNode().value; }
  • }
  • final class EntryIterator extends HashIterator
  • implements Iterator> {
  • public final Map.Entry next() { return nextNode(); }
  • }
  • /* ------------------------------------------------------------ */
  • // spliterators
  • static class HashMapSpliterator {
  • final HashMap map;
  • Node current; // current node
  • int index; // current index, modified on advance/split
  • int fence; // one past last index
  • int est; // size estimate
  • int expectedModCount; // for comodification checks
  • HashMapSpliterator(HashMap m, int origin,
  • int fence, int est,
  • int expectedModCount) {
  • this.map = m;
  • this.index = origin;
  • this.fence = fence;
  • this.est = est;
  • this.expectedModCount = expectedModCount;
  • }
  • final int getFence() { // initialize fence and size on first use
  • int hi;
  • if ((hi = fence) < 0) {
  • HashMap m = map;
  • est = m.size;
  • expectedModCount = m.modCount;
  • Node[] tab = m.table;
  • hi = fence = (tab == null) ? 0 : tab.length;
  • }
  • return hi;
  • }
  • public final long estimateSize() {
  • getFence(); // force init
  • return (long) est;
  • }
  • }
  • static final class KeySpliterator
  • extends HashMapSpliterator
  • implements Spliterator {
  • KeySpliterator(HashMap m, int origin, int fence, int est,
  • int expectedModCount) {
  • super(m, origin, fence, est, expectedModCount);
  • }
  • public KeySpliterator trySplit() {
  • int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
  • return (lo >= mid || current != null) ? null :
  • new KeySpliterator<>(map, lo, index = mid, est >>>= 1,
  • expectedModCount);
  • }
  • public void forEachRemaining(Consumersuper K> action) {
  • int i, hi, mc;
  • if (action == null)
  • throw new NullPointerException();
  • HashMap m = map;
  • Node[] tab = m.table;
  • if ((hi = fence) < 0) {
  • mc = expectedModCount = m.modCount;
  • hi = fence = (tab == null) ? 0 : tab.length;
  • }
  • else
  • mc = expectedModCount;
  • if (tab != null && tab.length >= hi &&
  • (i = index) >= 0 && (i < (index = hi) || current != null)) {
  • Node p = current;
  • current = null;
  • do {
  • if (p == null)
  • p = tab[i++];
  • else {
  • action.accept(p.key);
  • p = p.next;
  • }
  • } while (p != null || i < hi);
  • if (m.modCount != mc)
  • throw new ConcurrentModificationException();
  • }
  • }
  • public boolean tryAdvance(Consumersuper K> action) {
  • int hi;
  • if (action == null)
  • throw new NullPointerException();
  • Node[] tab = map.table;
  • if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
  • while (current != null || index < hi) {
  • if (current == null)
  • current = tab[index++];
  • else {
  • K k = current.key;
  • current = current.next;
  • action.accept(k);
  • if (map.modCount != expectedModCount)
  • throw new ConcurrentModificationException();
  • return true;
  • }
  • }
  • }
  • return false;
  • }
  • public int characteristics() {
  • return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
  • Spliterator.DISTINCT;
  • }
  • }
  • static final class ValueSpliterator
  • extends HashMapSpliterator
  • implements Spliterator {
  • ValueSpliterator(HashMap m, int origin, int fence, int est,
  • int expectedModCount) {
  • super(m, origin, fence, est, expectedModCount);
  • }
  • public ValueSpliterator trySplit() {
  • int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
  • return (lo >= mid || current != null) ? null :
  • new ValueSpliterator<>(map, lo, index = mid, est >>>= 1,
  • expectedModCount);
  • }
  • public void forEachRemaining(Consumersuper V> action) {
  • int i, hi, mc;
  • if (action == null)
  • throw new NullPointerException();
  • HashMap m = map;
  • Node[] tab = m.table;
  • if ((hi = fence) < 0) {
  • mc = expectedModCount = m.modCount;
  • hi = fence = (tab == null) ? 0 : tab.length;
  • }
  • else
  • mc = expectedModCount;
  • if (tab != null && tab.length >= hi &&
  • (i = index) >= 0 && (i < (index = hi) || current != null)) {
  • Node p = current;
  • current = null;
  • do {
  • if (p == null)
  • p = tab[i++];
  • else {
  • action.accept(p.value);
  • p = p.next;
  • }
  • } while (p != null || i < hi);
  • if (m.modCount != mc)
  • throw new ConcurrentModificationException();
  • }
  • }
  • public boolean tryAdvance(Consumersuper V> action) {
  • int hi;
  • if (action == null)
  • throw new NullPointerException();
  • Node[] tab = map.table;
  • if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
  • while (current != null || index < hi) {
  • if (current == null)
  • current = tab[index++];
  • else {
  • V v = current.value;
  • current = current.next;
  • action.accept(v);
  • if (map.modCount != expectedModCount)
  • throw new ConcurrentModificationException();
  • return true;
  • }
  • }
  • }
  • return false;
  • }
  • public int characteristics() {
  • return (fence < 0 || est == map.size ? Spliterator.SIZED : 0);
  • }
  • }
  • static final class EntrySpliterator
  • extends HashMapSpliterator
  • implements Spliterator> {
  • EntrySpliterator(HashMap m, int origin, int fence, int est,
  • int expectedModCount) {
  • super(m, origin, fence, est, expectedModCount);
  • }
  • public EntrySpliterator trySplit() {
  • int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
  • return (lo >= mid || current != null) ? null :
  • new EntrySpliterator<>(map, lo, index = mid, est >>>= 1,
  • expectedModCount);
  • }
  • public void forEachRemaining(Consumersuper Map.Entry> action) {
  • int i, hi, mc;
  • if (action == null)
  • throw new NullPointerException();
  • HashMap m = map;
  • Node[] tab = m.table;
  • if ((hi = fence) < 0) {
  • mc = expectedModCount = m.modCount;
  • hi = fence = (tab == null) ? 0 : tab.length;
  • }
  • else
  • mc = expectedModCount;
  • if (tab != null && tab.length >= hi &&
  • (i = index) >= 0 && (i < (index = hi) || current != null)) {
  • Node p = current;
  • current = null;
  • do {
  • if (p == null)
  • p = tab[i++];
  • else {
  • action.accept(p);
  • p = p.next;
  • }
  • } while (p != null || i < hi);
  • if (m.modCount != mc)
  • throw new ConcurrentModificationException();
  • }
  • }
  • public boolean tryAdvance(Consumersuper Map.Entry> action) {
  • int hi;
  • if (action == null)
  • throw new NullPointerException();
  • Node[] tab = map.table;
  • if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
  • while (current != null || index < hi) {
  • if (current == null)
  • current = tab[index++];
  • else {
  • Node e = current;
  • current = current.next;
  • action.accept(e);
  • if (map.modCount != expectedModCount)
  • throw new ConcurrentModificationException();
  • return true;
  • }
  • }
  • }
  • return false;
  • }
  • public int characteristics() {
  • return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
  • Spliterator.DISTINCT;
  • }
  • }
  • /* ------------------------------------------------------------ */
  • // LinkedHashMap support
  • /*
  • * The following package-protected methods are designed to be
  • * overridden by LinkedHashMap, but not by any other subclass.
  • * Nearly all other internal methods are also package-protected
  • * but are declared final, so can be used by LinkedHashMap, view
  • * classes, and HashSet.
  • */
  • // Create a regular (non-tree) node
  • Node newNode(int hash, K key, V value, Node next) {
  • return new Node<>(hash, key, value, next);
  • }
  • // For conversion from TreeNodes to plain nodes
  • Node replacementNode(Node p, Node next) {
  • return new Node<>(p.hash, p.key, p.value, next);
  • }
  • // Create a tree bin node
  • TreeNode newTreeNode(int hash, K key, V value, Node next) {
  • return new TreeNode<>(hash, key, value, next);
  • }
  • // For treeifyBin
  • TreeNode replacementTreeNode(Node p, Node next) {
  • return new TreeNode<>(p.hash, p.key, p.value, next);
  • }
  • /**
  • * Reset to initial default state. Called by clone and readObject.
  • */
  • void reinitialize() {
  • table = null;
  • entrySet = null;
  • keySet = null;
  • values = null;
  • modCount = 0;
  • threshold = 0;
  • size = 0;
  • }
  • // Callbacks to allow LinkedHashMap post-actions
  • void afterNodeAccess(Node p) { }
  • void afterNodeInsertion(boolean evict) { }
  • void afterNodeRemoval(Node p) { }
  • // Called only from writeObject, to ensure compatible ordering.
  • void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException {
  • Node[] tab;
  • if (size > 0 && (tab = table) != null) {
  • for (int i = 0; i < tab.length; ++i) {
  • for (Node e = tab[i]; e != null; e = e.next) {
  • s.writeObject(e.key);
  • s.writeObject(e.value);
  • }
  • }
  • }
  • }
  • /* ------------------------------------------------------------ */
  • // Tree bins
  • /**
  • * Entry for Tree bins. Extends LinkedHashMap.Entry (which in turn
  • * extends Node) so can be used as extension of either regular or
  • * linked node.
  • */
  • static final class TreeNode extends LinkedHashMap.Entry {
  • TreeNode parent; // red-black tree links
  • TreeNode left;
  • TreeNode right;
  • TreeNode prev; // needed to unlink next upon deletion
  • boolean red;
  • TreeNode(int hash, K key, V val, Node next) {
  • super(hash, key, val, next);
  • }
  • /**
  • * Returns root of tree containing this node.
  • */
  • final TreeNode root() {
  • for (TreeNode r = this, p;;) {
  • if ((p = r.parent) == null)
  • return r;
  • r = p;
  • }
  • }
  • /**
  • * Ensures that the given root is the first node of its bin.
  • */
  • static void moveRootToFront(Node[] tab, TreeNode root) {
  • int n;
  • if (root != null && tab != null && (n = tab.length) > 0) {
  • int index = (n - 1) & root.hash;
  • TreeNode first = (TreeNode)tab[index];
  • if (root != first) {
  • Node rn;
  • tab[index] = root;
  • TreeNode rp = root.prev;
  • if ((rn = root.next) != null)
  • ((TreeNode)rn).prev = rp;
  • if (rp != null)
  • rp.next = rn;
  • if (first != null)
  • first.prev = root;
  • root.next = first;
  • root.prev = null;
  • }
  • assert checkInvariants(root);
  • }
  • }
  • /**
  • * Finds the node starting at root p with the given hash and key.
  • * The kc argument caches comparableClassFor(key) upon first use
  • * comparing keys.
  • */
  • final TreeNode find(int h, Object k, Class kc) {
  • TreeNode p = this;
  • do {
  • int ph, dir; K pk;
  • TreeNode pl = p.left, pr = p.right, q;
  • if ((ph = p.hash) > h)
  • p = pl;
  • else if (ph < h)
  • p = pr;
  • else if ((pk = p.key) == k || (k != null && k.equals(pk)))
  • return p;
  • else if (pl == null)
  • p = pr;
  • else if (pr == null)
  • p = pl;
  • else if ((kc != null ||
  • (kc = comparableClassFor(k)) != null) &&
  • (dir = compareComparables(kc, k, pk)) != 0)
  • p = (dir < 0) ? pl : pr;
  • else if ((q = pr.find(h, k, kc)) != null)
  • return q;
  • else
  • p = pl;
  • } while (p != null);
  • return null;
  • }
  • /**
  • * Calls find for root node.
  • */
  • final TreeNode getTreeNode(int h, Object k) {
  • return ((parent != null) ? root() : this).find(h, k, null);
  • }
  • /**
  • * Tie-breaking utility for ordering insertions when equal
  • * hashCodes and non-comparable. We don't require a total
  • * order, just a consistent insertion rule to maintain
  • * equivalence across rebalancings. Tie-breaking further than
  • * necessary simplifies testing a bit.
  • */
  • static int tieBreakOrder(Object a, Object b) {
  • int d;
  • if (a == null || b == null ||
  • (d = a.getClass().getName().
  • compareTo(b.getClass().getName())) == 0)
  • d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
  • -1 : 1);
  • return d;
  • }
  • /**
  • * Forms tree of the nodes linked from this node.
  • * @return root of tree
  • */
  • final void treeify(Node[] tab) {
  • TreeNode root = null;
  • for (TreeNode x = this, next; x != null; x = next) {
  • next = (TreeNode)x.next;
  • x.left = x.right = null;
  • if (root == null) {
  • x.parent = null;
  • x.red = false;
  • root = x;
  • }
  • else {
  • K k = x.key;
  • int h = x.hash;
  • Class kc = null;
  • for (TreeNode p = root;;) {
  • int dir, ph;
  • K pk = p.key;
  • if ((ph = p.hash) > h)
  • dir = -1;
  • else if (ph < h)
  • dir = 1;
  • else if ((kc == null &&
  • (kc = comparableClassFor(k)) == null) ||
  • (dir = compareComparables(kc, k, pk)) == 0)
  • dir = tieBreakOrder(k, pk);
  • TreeNode xp = p;
  • if ((p = (dir <= 0) ? p.left : p.right) == null) {
  • x.parent = xp;
  • if (dir <= 0)
  • xp.left = x;
  • else
  • xp.right = x;
  • root = balanceInsertion(root, x);
  • break;
  • }
  • }
  • }
  • }
  • moveRootToFront(tab, root);
  • }
  • /**
  • * Returns a list of non-TreeNodes replacing those linked from
  • * this node.
  • */
  • final Node untreeify(HashMap map) {
  • Node hd = null, tl = null;
  • for (Node q = this; q != null; q = q.next) {
  • Node p = map.replacementNode(q, null);
  • if (tl == null)
  • hd = p;
  • else
  • tl.next = p;
  • tl = p;
  • }
  • return hd;
  • }
  • /**
  • * Tree version of putVal.
  • */
  • final TreeNode putTreeVal(HashMap map, Node[] tab,
  • int h, K k, V v) {
  • Class kc = null;
  • boolean searched = false;
  • TreeNode root = (parent != null) ? root() : this;
  • for (TreeNode p = root;;) {
  • int dir, ph; K pk;
  • if ((ph = p.hash) > h)
  • dir = -1;
  • else if (ph < h)
  • dir = 1;
  • else if ((pk = p.key) == k || (k != null && k.equals(pk)))
  • return p;
  • else if ((kc == null &&
  • (kc = comparableClassFor(k)) == null) ||
  • (dir = compareComparables(kc, k, pk)) == 0) {
  • if (!searched) {
  • TreeNode q, ch;
  • searched = true;
  • if (((ch = p.left) != null &&
  • (q = ch.find(h, k, kc)) != null) ||
  • ((ch = p.right) != null &&
  • (q = ch.find(h, k, kc)) != null))
  • return q;
  • }
  • dir = tieBreakOrder(k, pk);
  • }
  • TreeNode xp = p;
  • if ((p = (dir <= 0) ? p.left : p.right) == null) {
  • Node xpn = xp.next;
  • TreeNode x = map.newTreeNode(h, k, v, xpn);
  • if (dir <= 0)
  • xp.left = x;
  • else
  • xp.right = x;
  • xp.next = x;
  • x.parent = x.prev = xp;
  • if (xpn != null)
  • ((TreeNode)xpn).prev = x;
  • moveRootToFront(tab, balanceInsertion(root, x));
  • return null;
  • }
  • }
  • }
  • /**
  • * Removes the given node, that must be present before this call.
  • * This is messier than typical red-black deletion code because we
  • * cannot swap the contents of an interior node with a leaf
  • * successor that is pinned by "next" pointers that are accessible
  • * independently during traversal. So instead we swap the tree
  • * linkages. If the current tree appears to have too few nodes,
  • * the bin is converted back to a plain bin. (The test triggers
  • * somewhere between 2 and 6 nodes, depending on tree structure).
  • */
  • final void removeTreeNode(HashMap map, Node[] tab,
  • boolean movable) {
  • int n;
  • if (tab == null || (n = tab.length) == 0)
  • return;
  • int index = (n - 1) & hash;
  • TreeNode first = (TreeNode)tab[index], root = first, rl;
  • TreeNode succ = (TreeNode)next, pred = prev;
  • if (pred == null)
  • tab[index] = first = succ;
  • else
  • pred.next = succ;
  • if (succ != null)
  • succ.prev = pred;
  • if (first == null)
  • return;
  • if (root.parent != null)
  • root = root.root();
  • if (root == null || root.right == null ||
  • (rl = root.left) == null || rl.left == null) {
  • tab[index] = first.untreeify(map); // too small
  • return;
  • }
  • TreeNode p = this, pl = left, pr = right, replacement;
  • if (pl != null && pr != null) {
  • TreeNode s = pr, sl;
  • while ((sl = s.left) != null) // find successor
  • s = sl;
  • boolean c = s.red; s.red = p.red; p.red = c; // swap colors
  • TreeNode sr = s.right;
  • TreeNode pp = p.parent;
  • if (s == pr) { // p was s's direct parent
  • p.parent = s;
  • s.right = p;
  • }
  • else {
  • TreeNode sp = s.parent;
  • if ((p.parent = sp) != null) {
  • if (s == sp.left)
  • sp.left = p;
  • else
  • sp.right = p;
  • }
  • if ((s.right = pr) != null)
  • pr.parent = s;
  • }
  • p.left = null;
  • if ((p.right = sr) != null)
  • sr.parent = p;
  • if ((s.left = pl) != null)
  • pl.parent = s;
  • if ((s.parent = pp) == null)
  • root = s;
  • else if (p == pp.left)
  • pp.left = s;
  • else
  • pp.right = s;
  • if (sr != null)
  • replacement = sr;
  • else
  • replacement = p;
  • }
  • else if (pl != null)
  • replacement = pl;
  • else if (pr != null)
  • replacement = pr;
  • else
  • replacement = p;
  • if (replacement != p) {
  • TreeNode pp = replacement.parent = p.parent;
  • if (pp == null)
  • root = replacement;
  • else if (p == pp.left)
  • pp.left = replacement;
  • else
  • pp.right = replacement;
  • p.left = p.right = p.parent = null;
  • }
  • TreeNode r = p.red ? root : balanceDeletion(root, replacement);
  • if (replacement == p) { // detach
  • TreeNode pp = p.parent;
  • p.parent = null;
  • if (pp != null) {
  • if (p == pp.left)
  • pp.left = null;
  • else if (p == pp.right)
  • pp.right = null;
  • }
  • }
  • if (movable)
  • moveRootToFront(tab, r);
  • }
  • /**
  • * Splits nodes in a tree bin into lower and upper tree bins,
  • * or untreeifies if now too small. Called only from resize;
  • * see above discussion about split bits and indices.
  • *
  • * @param map the map
  • * @param tab the table for recording bin heads
  • * @param index the index of the table being split
  • * @param bit the bit of hash to split on
  • */
  • final void split(HashMap map, Node[] tab, int index, int bit) {
  • TreeNode b = this;
  • // Relink into lo and hi lists, preserving order
  • TreeNode loHead = null, loTail = null;
  • TreeNode hiHead = null, hiTail = null;
  • int lc = 0, hc = 0;
  • for (TreeNode e = b, next; e != null; e = next) {
  • next = (TreeNode)e.next;
  • e.next = null;
  • if ((e.hash & bit) == 0) {
  • if ((e.prev = loTail) == null)
  • loHead = e;
  • else
  • loTail.next = e;
  • loTail = e;
  • ++lc;
  • }
  • else {
  • if ((e.prev = hiTail) == null)
  • hiHead = e;
  • else
  • hiTail.next = e;
  • hiTail = e;
  • ++hc;
  • }
  • }
  • if (loHead != null) {
  • if (lc <= UNTREEIFY_THRESHOLD)
  • tab[index] = loHead.untreeify(map);
  • else {
  • tab[index] = loHead;
  • if (hiHead != null) // (else is already treeified)
  • loHead.treeify(tab);
  • }
  • }
  • if (hiHead != null) {
  • if (hc <= UNTREEIFY_THRESHOLD)
  • tab[index + bit] = hiHead.untreeify(map);
  • else {
  • tab[index + bit] = hiHead;
  • if (loHead != null)
  • hiHead.treeify(tab);
  • }
  • }
  • }
  • /* ------------------------------------------------------------ */
  • // Red-black tree methods, all adapted from CLR
  • static TreeNode rotateLeft(TreeNode root,
  • TreeNode p) {
  • TreeNode r, pp, rl;
  • if (p != null && (r = p.right) != null) {
  • if ((rl = p.right = r.left) != null)
  • rl.parent = p;
  • if ((pp = r.parent = p.parent) == null)
  • (root = r).red = false;
  • else if (pp.left == p)
  • pp.left = r;
  • else
  • pp.right = r;
  • r.left = p;
  • p.parent = r;
  • }
  • return root;
  • }
  • static TreeNode rotateRight(TreeNode root,
  • TreeNode p) {
  • TreeNode l, pp, lr;
  • if (p != null && (l = p.left) != null) {
  • if ((lr = p.left = l.right) != null)
  • lr.parent = p;
  • if ((pp = l.parent = p.parent) == null)
  • (root = l).red = false;
  • else if (pp.right == p)
  • pp.right = l;
  • else
  • pp.left = l;
  • l.right = p;
  • p.parent = l;
  • }
  • return root;
  • }
  • static TreeNode balanceInsertion(TreeNode root,
  • TreeNode x) {
  • x.red = true;
  • for (TreeNode xp, xpp, xppl, xppr;;) {
  • if ((xp = x.parent) == null) {
  • x.red = false;
  • return x;
  • }
  • else if (!xp.red || (xpp = xp.parent) == null)
  • return root;
  • if (xp == (xppl = xpp.left)) {
  • if ((xppr = xpp.right) != null && xppr.red) {
  • xppr.red = false;
  • xp.red = false;
  • xpp.red = true;
  • x = xpp;
  • }
  • else {
  • if (x == xp.right) {
  • root = rotateLeft(root, x = xp);
  • xpp = (xp = x.parent) == null ? null : xp.parent;
  • }
  • if (xp != null) {
  • xp.red = false;
  • if (xpp != null) {
  • xpp.red = true;
  • root = rotateRight(root, xpp);
  • }
  • }
  • }
  • }
  • else {
  • if (xppl != null && xppl.red) {
  • xppl.red = false;
  • xp.red = false;
  • xpp.red = true;
  • x = xpp;
  • }
  • else {
  • if (x == xp.left) {
  • root = rotateRight(root, x = xp);
  • xpp = (xp = x.parent) == null ? null : xp.parent;
  • }
  • if (xp != null) {
  • xp.red = false;
  • if (xpp != null) {
  • xpp.red = true;
  • root = rotateLeft(root, xpp);
  • }
  • }
  • }
  • }
  • }
  • }
  • static TreeNode balanceDeletion(TreeNode root,
  • TreeNode x) {
  • for (TreeNode xp, xpl, xpr;;) {
  • if (x == null || x == root)
  • return root;
  • else if ((xp = x.parent) == null) {
  • x.red = false;
  • return x;
  • }
  • else if (x.red) {
  • x.red = false;
  • return root;
  • }
  • else if ((xpl = xp.left) == x) {
  • if ((xpr = xp.right) != null && xpr.red) {
  • xpr.red = false;
  • xp.red = true;
  • root = rotateLeft(root, xp);
  • xpr = (xp = x.parent) == null ? null : xp.right;
  • }
  • if (xpr == null)
  • x = xp;
  • else {
  • TreeNode sl = xpr.left, sr = xpr.right;
  • if ((sr == null || !sr.red) &&
  • (sl == null || !sl.red)) {
  • xpr.red = true;
  • x = xp;
  • }
  • else {
  • if (sr == null || !sr.red) {
  • if (sl != null)
  • sl.red = false;
  • xpr.red = true;
  • root = rotateRight(root, xpr);
  • xpr = (xp = x.parent) == null ?
  • null : xp.right;
  • }
  • if (xpr != null) {
  • xpr.red = (xp == null) ? false : xp.red;
  • if ((sr = xpr.right) != null)
  • sr.red = false;
  • }
  • if (xp != null) {
  • xp.red = false;
  • root = rotateLeft(root, xp);
  • }
  • x = root;
  • }
  • }
  • }
  • else { // symmetric
  • if (xpl != null && xpl.red) {
  • xpl.red = false;
  • xp.red = true;
  • root = rotateRight(root, xp);
  • xpl = (xp = x.parent) == null ? null : xp.left;
  • }
  • if (xpl == null)
  • x = xp;
  • else {
  • TreeNode sl = xpl.left, sr = xpl.right;
  • if ((sl == null || !sl.red) &&
  • (sr == null || !sr.red)) {
  • xpl.red = true;
  • x = xp;
  • }
  • else {
  • if (sl == null || !sl.red) {
  • if (sr != null)
  • sr.red = false;
  • xpl.red = true;
  • root = rotateLeft(root, xpl);
  • xpl = (xp = x.parent) == null ?
  • null : xp.left;
  • }
  • if (xpl != null) {
  • xpl.red = (xp == null) ? false : xp.red;
  • if ((sl = xpl.left) != null)
  • sl.red = false;
  • }
  • if (xp != null) {
  • xp.red = false;
  • root = rotateRight(root, xp);
  • }
  • x = root;
  • }
  • }
  • }
  • }
  • }
  • /**
  • * Recursive invariant check
  • */
  • static boolean checkInvariants(TreeNode t) {
  • TreeNode tp = t.parent, tl = t.left, tr = t.right,
  • tb = t.prev, tn = (TreeNode)t.next;
  • if (tb != null && tb.next != t)
  • return false;
  • if (tn != null && tn.prev != t)
  • return false;
  • if (tp != null && t != tp.left && t != tp.right)
  • return false;
  • if (tl != null && (tl.parent != t || tl.hash > t.hash))
  • return false;
  • if (tr != null && (tr.parent != t || tr.hash < t.hash))
  • return false;
  • if (t.red && tl != null && tl.red && tr != null && tr.red)
  • return false;
  • if (tl != null && !checkInvariants(tl))
  • return false;
  • if (tr != null && !checkInvariants(tr))
  • return false;
  • return true;
  • }
  • }
  • }
  • 补充:HashTable在实现过程中put方法设置值时增加了sychornized 保证线程安全。

  • 相关阅读:
    如何对非线性【SVM】进行三维可视化
    postgresql源码学习(36)—— 事务日志11 - 日志归档
    漂亮的pyqt6皮肤 PyOneDark_Qt_Widgets_Modern_GUIPublic
    数据库——实验9 存储过程的使用
    Tomcat 发布项目 conf/Catalina/localhost 配置
    推特的算法规则你知道多少?
    【Linux系统】第二篇、权限管理篇
    自定义函数
    【大家的项目】可 Deferred 就绪的 Future 实现类
    Python顺序、条件和循环
  • 原文地址:https://blog.csdn.net/dongjing991/article/details/127620247