• Redis的持久化方式各有什么优点?


    Redis 如何实现数据不丢失?

    Redis 的读写操作都是在内存中,所以 Redis 性能才会高,但是当 Redis 重启后,内存中的数据就会丢失,那为了保证内存中的数据不会丢失,Redis 实现了数据持久化的机制,这个机制会把数据存储到磁盘,这样在 Redis 重启就能够从磁盘中恢复原有的数据。

    Redis 共有三种数据持久化的方式:

    • AOF 日志:每执行一条写操作命令,就把该命令以追加的方式写入到一个文件里;
    • RDB 快照:将某一时刻的内存数据,以二进制的方式写入磁盘;
    • 混合持久化方式:Redis 4.0 新增的方式,集成了 AOF 和 RBD 的优点;

    AOF 日志是如何实现的?

    Redis 在执行完一条写操作命令后,就会把该命令以追加的方式写入到一个文件里,然后 Redis 重启时,会读取该文件记录的命令,然后逐一执行命令的方式来进行数据恢复

    我这里以「set name xiaolin」命令作为例子,Redis 执行了这条命令后,记录在 AOF 日志里的内容如下图:

    我这里给大家解释下。

    「*3」表示当前命令有三个部分,每部分都是以「$+数字」开头,后面紧跟着具体的命令、键或值。然后,这里的「数字」表示这部分中的命令、键或值一共有多少字节。例如,「$3 set」表示这部分有 3 个字节,也就是「set」命令这个字符串的长度。

    为什么先执行命令,再把数据写入日志呢?

    Reids 是先执行写操作命令后,才将该命令记录到 AOF 日志里的,这么做其实有两个好处。

    • 避免额外的检查开销:因为如果先将写操作命令记录到 AOF 日志里,再执行该命令的话,如果当前的命令语法有问题,那么如果不进行命令语法检查,该错误的命令记录到 AOF 日志里后,Redis 在使用日志恢复数据时,就可能会出错。
    • 不会阻塞当前写操作命令的执行:因为当写操作命令执行成功后,才会将命令记录到 AOF 日志。

    当然,这样做也会带来风险:

    • 数据可能会丢失: 执行写操作命令和记录日志是两个过程,那当 Redis 在还没来得及将命令写入到硬盘时,服务器发生宕机了,这个数据就会有丢失的风险。
    • 可能阻塞其他操作: 由于写操作命令执行成功后才记录到 AOF 日志,所以不会阻塞当前命令的执行,但因为 AOF 日志也是在主线程中执行,所以当 Redis 把日志文件写入磁盘的时候,还是会阻塞后续的操作无法执行。
    AOF 写回策略有几种?

    先来看看,Redis 写入 AOF 日志的过程,如下图:

    具体说说:

    1. Redis 执行完写操作命令后,会将命令追加到 server.aof_buf 缓冲区;
    2. 然后通过 write() 系统调用,将 aof_buf 缓冲区的数据写入到 AOF 文件,此时数据并没有写入到硬盘,而是拷贝到了内核缓冲区 page cache,等待内核将数据写入硬盘;
    3. 具体内核缓冲区的数据什么时候写入到硬盘,由内核决定。

    Redis 提供了 3 种写回硬盘的策略,控制的就是上面说的第三步的过程。 在 Redis.conf 配置文件中的 appendfsync 配置项可以有以下 3 种参数可填:

    • Always,这个单词的意思是「总是」,所以它的意思是每次写操作命令执行完后,同步将 AOF 日志数据写回硬盘;
    • Everysec,这个单词的意思是「每秒」,所以它的意思是每次写操作命令执行完后,先将命令写入到 AOF 文件的内核缓冲区,然后每隔一秒将缓冲区里的内容写回到硬盘;
    • No,意味着不由 Redis 控制写回硬盘的时机,转交给操作系统控制写回的时机,也就是每次写操作命令执行完后,先将命令写入到 AOF 文件的内核缓冲区,再由操作系统决定何时将缓冲区内容写回硬盘。

    我也把这 3 个写回策略的优缺点总结成了一张表格:

    AOF 日志过大,会触发什么机制?

    AOF 日志是一个文件,随着执行的写操作命令越来越多,文件的大小会越来越大。 如果当 AOF 日志文件过大就会带来性能问题,比如重启 Redis 后,需要读 AOF 文件的内容以恢复数据,如果文件过大,整个恢复的过程就会很慢。

    所以,Redis 为了避免 AOF 文件越写越大,提供了 AOF 重写机制,当 AOF 文件的大小超过所设定的阈值后,Redis 就会启用 AOF 重写机制,来压缩 AOF 文件。

    AOF 重写机制是在重写时,读取当前数据库中的所有键值对,然后将每一个键值对用一条命令记录到「新的 AOF 文件」,等到全部记录完后,就将新的 AOF 文件替换掉现有的 AOF 文件。

    举个例子,在没有使用重写机制前,假设前后执行了「set name xiaolin」和「set name xiaolincoding」这两个命令的话,就会将这两个命令记录到 AOF 文件。

    但是在使用重写机制后,就会读取 name 最新的 value(键值对) ,然后用一条 「set name xiaolincoding」命令记录到新的 AOF 文件,之前的第一个命令就没有必要记录了,因为它属于「历史」命令,没有作用了。这样一来,一个键值对在重写日志中只用一条命令就行了。

    重写工作完成后,就会将新的 AOF 文件覆盖现有的 AOF 文件,这就相当于压缩了 AOF 文件,使得 AOF 文件体积变小了。

    重写 AOF 日志的过程是怎样的?

    Redis 的重写 AOF 过程是由后台子进程 bgrewriteaof 来完成的,这么做可以达到两个好处:

    • 子进程进行 AOF 重写期间,主进程可以继续处理命令请求,从而避免阻塞主进程;
    • 子进程带有主进程的数据副本,这里使用子进程而不是线程,因为如果是使用线程,多线程之间会共享内存,那么在修改共享内存数据的时候,需要通过加锁来保证数据的安全,而这样就会降低性能。而使用子进程,创建子进程时,父子进程是共享内存数据的,不过这个共享的内存只能以只读的方式,而当父子进程任意一方修改了该共享内存,就会发生「写时复制」,于是父子进程就有了独立的数据副本,就不用加锁来保证数据安全。

    触发重写机制后,主进程就会创建重写 AOF 的子进程,此时父子进程共享物理内存,重写子进程只会对这个内存进行只读,重写 AOF 子进程会读取数据库里的所有数据,并逐一把内存数据的键值对转换成一条命令,再将命令记录到重写日志(新的 AOF 文件)。

    但是重写过程中,主进程依然可以正常处理命令,那问题来了,重写 AOF 日志过程中,如果主进程修改了已经存在 key-value,那么会发生写时复制,此时这个 key-value 数据在子进程的内存数据就跟主进程的内存数据不一致了,这时要怎么办呢?

    为了解决这种数据不一致问题,Redis 设置了一个 AOF 重写缓冲区,这个缓冲区在创建 bgrewriteaof 子进程之后开始使用。

    在重写 AOF 期间,当 Redis 执行完一个写命令之后,它会同时将这个写命令写入到 「AOF 缓冲区」和 「AOF 重写缓冲区」

    也就是说,在 bgrewriteaof 子进程执行 AOF 重写期间,主进程需要执行以下三个工作:

    • 执行客户端发来的命令;
    • 将执行后的写命令追加到 「AOF 缓冲区」;
    • 将执行后的写命令追加到 「AOF 重写缓冲区」;

    当子进程完成 AOF 重写工作(扫描数据库中所有数据,逐一把内存数据的键值对转换成一条命令,再将命令记录到重写日志)后,会向主进程发送一条信号,信号是进程间通讯的一种方式,且是异步的。

    主进程收到该信号后,会调用一个信号处理函数,该函数主要做以下工作:

    • 将 AOF 重写缓冲区中的所有内容追加到新的 AOF 的文件中,使得新旧两个 AOF 文件所保存的数据库状态一致;
    • 新的 AOF 的文件进行改名,覆盖现有的 AOF 文件。

    信号函数执行完后,主进程就可以继续像往常一样处理命令了。

    AOF 日志的内容就暂时提这些,想更详细了解 AOF 日志的工作原理,可以详细看这篇:

    AOF 持久化是怎么实现的?​xiaolincoding.com/redis/storage/aof.html正在上传…重新上传取消

    #RDB 快照是如何实现的呢?

    因为 AOF 日志记录的是操作命令,不是实际的数据,所以用 AOF 方法做故障恢复时,需要全量把日志都执行一遍,一旦 AOF 日志非常多,势必会造成 Redis 的恢复操作缓慢。

    为了解决这个问题,Redis 增加了 RDB 快照。所谓的快照,就是记录某一个瞬间东西,比如当我们给风景拍照时,那一个瞬间的画面和信息就记录到了一张照片。

    所以,RDB 快照就是记录某一个瞬间的内存数据,记录的是实际数据,而 AOF 文件记录的是命令操作的日志,而不是实际的数据。

    因此在 Redis 恢复数据时, RDB 恢复数据的效率会比 AOF 高些,因为直接将 RDB 文件读入内存就可以,不需要像 AOF 那样还需要额外执行操作命令的步骤才能恢复数据。

    RDB 做快照时会阻塞线程吗?

    Redis 提供了两个命令来生成 RDB 文件,分别是 save 和 bgsave,他们的区别就在于是否在「主线程」里执行:

    • 执行了 save 命令,就会在主线程生成 RDB 文件,由于和执行操作命令在同一个线程,所以如果写入 RDB 文件的时间太长,会阻塞主线程
    • 执行了 bgsave 命令,会创建一个子进程来生成 RDB 文件,这样可以避免主线程的阻塞

    Redis 还可以通过配置文件的选项来实现每隔一段时间自动执行一次 bgsave 命令,默认会提供以下配置:

    save 900 1 save 300 10 save 60 10000

    别看选项名叫 save,实际上执行的是 bgsave 命令,也就是会创建子进程来生成 RDB 快照文件。 只要满足上面条件的任意一个,就会执行 bgsave,它们的意思分别是:

    • 900 秒之内,对数据库进行了至少 1 次修改;
    • 300 秒之内,对数据库进行了至少 10 次修改;
    • 60 秒之内,对数据库进行了至少 10000 次修改。

    这里提一点,Redis 的快照是全量快照,也就是说每次执行快照,都是把内存中的「所有数据」都记录到磁盘中。所以执行快照是一个比较重的操作,如果频率太频繁,可能会对 Redis 性能产生影响。如果频率太低,服务器故障时,丢失的数据会更多。

    RDB 在执行快照的时候,数据能修改吗?

    可以的,执行 bgsave 过程中,Redis 依然可以继续处理操作命令的,也就是数据是能被修改的,关键的技术就在于写时复制技术(Copy-On-Write, COW)。

    执行 bgsave 命令的时候,会通过 fork() 创建子进程,此时子进程和父进程是共享同一片内存数据的,因为创建子进程的时候,会复制父进程的页表,但是页表指向的物理内存还是一个,此时如果主线程执行读操作,则主线程和 bgsave 子进程互相不影响。

    如果主线程执行写操作,则被修改的数据会复制一份副本,然后 bgsave 子进程会把该副本数据写入 RDB 文件,在这个过程中,主线程仍然可以直接修改原来的数据。


    RDB 快照的内容就暂时提这些,想更详细了解 RDB 快照的工作原理,可以详细看这篇:

    RDB 快照是怎么实现的?​xiaolincoding.com/redis/storage/rdb.html正在上传…重新上传取消

    为什么会有混合持久化?

    RDB 优点是数据恢复速度快,但是快照的频率不好把握。频率太低,丢失的数据就会比较多,频率太高,就会影响性能。

    AOF 优点是丢失数据少,但是数据恢复不快。

    为了集成了两者的优点, Redis 4.0 提出了混合使用 AOF 日志和内存快照,也叫混合持久化,既保证了 Redis 重启速度,又降低数据丢失风险。

    混合持久化工作在 AOF 日志重写过程,当开启了混合持久化时,在 AOF 重写日志时,fork 出来的重写子进程会先将与主线程共享的内存数据以 RDB 方式写入到 AOF 文件,然后主线程处理的操作命令会被记录在重写缓冲区里,重写缓冲区里的增量命令会以 AOF 方式写入到 AOF 文件,写入完成后通知主进程将新的含有 RDB 格式和 AOF 格式的 AOF 文件替换旧的的 AOF 文件。

    也就是说,使用了混合持久化,AOF 文件的前半部分是 RDB 格式的全量数据,后半部分是 AOF 格式的增量数据

    这样的好处在于,重启 Redis 加载数据的时候,由于前半部分是 RDB 内容,这样加载的时候速度会很快

    加载完 RDB 的内容后,才会加载后半部分的 AOF 内容,这里的内容是 Redis 后台子进程重写 AOF 期间,主线程处理的操作命令,可以使得数据更少的丢失

    混合持久化优点:

    • 混合持久化结合了 RDB 和 AOF 持久化的优点,开头为 RDB 的格式,使得 Redis 可以更快的启动,同时结合 AOF 的优点,有减低了大量数据丢失的风险。

    混合持久化缺点:

    • AOF 文件中添加了 RDB 格式的内容,使得 AOF 文件的可读性变得很差;
    • 兼容性差,如果开启混合持久化,那么此混合持久化 AOF 文件,就不能用在 Redis 4.0 之前版本了。
  • 相关阅读:
    旅游推荐系统
    CSP-J/S 报名全攻略(含考纲)
    Swagger的界面太丑,试试knife4j的接口文档吧
    微服务从代码到k8s部署应有尽有系列(一)
    【练习题】二.栈和队列
    leetcode算法题--求1+2+…+n
    用python统计文本字符出现的次数
    榛子云短信验证平台与springboot集成的短信验证
    【图像处理】小波编码图像中伪影和纹理的检测(Matlab代码实现)
    Flutter开发者开发薪资高吗?前景怎么样
  • 原文地址:https://blog.csdn.net/mfmfmfo/article/details/127036993