要求:给定一个数列{13,7,8,3,29,6,1},要求转成一个霍夫曼树。
public class HuffmanTree {
public static void main(String[] args) {
int arr[] = {
13, 7, 8, 3, 29, 6, 1 };
Node root = createHuffmanTree(arr);
//测试一把
preOrder(root); //
}
//编写一个前序遍历的方法
public static void preOrder(Node root) {
if(root != null) {
root.preOrder();
}else{
System.out.println("是空树,不能遍历~~");
}
}
// 创建赫夫曼树的方法
/**
*
* @param arr 需要创建成哈夫曼树的数组
* @return 创建好后的赫夫曼树的root结点
*/
public static Node createHuffmanTree(int[] arr) {
// 第一步为了操作方便
// 1. 遍历 arr 数组
// 2. 将arr的每个元素构成成一个Node
// 3. 将Node 放入到ArrayList中
List<Node> nodes = new ArrayList<Node>();
for (int value : arr) {
nodes.add(new Node(value));
}
//我们处理的过程是一个循环的过程
while(nodes.size() > 1) {
//排序 从小到大
Collections.sort(nodes);
System.out.println("nodes =" + nodes);
//取出根节点权值最小的两颗二叉树
//(1) 取出权值最小的结点(二叉树)
Node leftNode = nodes.get(0);
//(2) 取出权值第二小的结点(二叉树)
Node rightNode = nodes.get(1);
//(3)构建一颗新的二叉树
Node parent = new Node(leftNode.value + rightNode.value);
parent.left = leftNode;
parent.right = rightNode;
//(4)从ArrayList删除处理过的二叉树
nodes.remove(leftNode);
nodes.remove(rightNode);
//(5)将parent加入到nodes
nodes.add(parent);
}
//返回哈夫曼树的root结点
return nodes.get(0);
}
}
// 创建结点类
// 为了让Node 对象持续排序Collections集合排序
// 让Node 实现Comparable接口
class Node implements Comparable<Node> {
int value; // 结点权值
char c; //字符
Node left; // 指向左子结点
Node right; // 指向右子结点
//写一个前序遍历
public void preOrder() {
System.out.println(this);
if(this.left != null) {
this.left.preOrder();
}
if(this.right != null) {
this.right.preOrder();
}
}
public Node(int value) {
this.value = value;
}
@Override
public String toString() {
return "Node [value=" + value + "]";
}
@Override
public int compareTo(Node o) {
// TODO Auto-generated method stub
// 表示从小到大排序
return this.value - o.value;
}
}
通信领域中信息的处理方式:
定长编码:
变长编码:目前存在匹配的多意性,比如10010110100,我们是理解成10 0 101 10 100,但是机器也能理解成1 0 0 。。。。
霍夫曼编码
注意:在获取字符出现次数时,可能出现重复的情况,但是这个不影响,我们生成的霍夫曼的树不一样,但是树的权(WPL)还是一样的,也就是压缩效率还是一致的。
//创建Node ,待数据和权值
class Node implements Comparable<Node> {
Byte data; // 存放数据(字符)本身,比如'a' => 97 ' ' => 32
int weight; //权值, 表示字符出现的次数
Node left;//
Node right;
public Node(Byte data, int weight) {
this.data = data;
this.weight = weight;
}
@Override
public int compareTo(Node o) {
// 从小到大排序
return this.weight - o.weight;
}
public String toString() {
return "Node [data = " + data + " weight=" + weight + "]";
}
//前序遍历
public void preOrder() {
System.out.println(this);
if(this.left != null) {
this.left.preOrder();
}
if(this.right != null) {
this.right.preOrder();
}
}
}
/**
* 步骤一:
* @param bytes 接收字节数组
* @return 返回的就是 List 形式 [Node[date=97 ,weight = 5], Node[]date=32,weight = 9]......],
*/
private static List<Node> getNodes(byte[] bytes) {
//1创建一个ArrayList
ArrayList<Node> nodes = new ArrayList<Node>();
//遍历 bytes , 统计 每一个byte出现的次数->map[key,value]
Map<Byte, Integer> counts = new HashMap<>();
for (byte b : bytes) {
Integer count = counts.get(b);
if (count == null) {
// Map还没有这个字符数据,第一次
counts.put(b, 1);
} else {
counts.put(b, count + 1);
}
}
//把每一个键值对转成一个Node 对象,并加入到nodes集合
//遍历map
for(Map.Entry<Byte, Integer> entry: counts.entrySet()) {
nodes.add(new Node(entry.getKey(), entry.getValue()));
}
return nodes;
}
// 步骤二:
//将getNodes方法生成的Node列表转变成对应的赫夫曼树,并返回最后的根节点
private static Node createHuffmanTree(List<Node> nodes) {
while(nodes.size() > 1) {
//排序, 从小到大
Collections.sort(nodes);
//取出第一颗最小的二叉树
Node leftNode = nodes.get(0);
//取出第二颗最小的二叉树
Node rightNode = nodes.get(1);
//创建一颗新的二叉树,它的根节点 没有data, 只有权值
Node parent = new Node(null, leftNode.weight + rightNode.weight);
parent.left = leftNode;
parent.right = rightNode;
//将已经处理的两颗二叉树从nodes删除
nodes.remove(leftNode);
nodes.remove(rightNode);
//将新的二叉树,加入到nodes
nodes.add(parent);
}
//nodes 最后的结点,就是赫夫曼树的根结点
return nodes.get(0)