时间复杂度是 O(nm)O(nm), nn 表示点数,mm 表示边数
int n1, n2; // n1表示第一个集合中的点数,n2表示第二个集合中的点数
int h[N], e[M], ne[M], idx; // 邻接表存储所有边,匈牙利算法中只会用到从第一个集合指向第二个集合的边,所以这里只用存一个方向的边
int match[N]; // 存储第二个集合中的每个点当前匹配的第一个集合中的点是哪个
bool st[N]; // 表示第二个集合中的每个点是否已经被遍历过
bool find(int x)
{
for (int i = h[x]; i != -1; i = ne[i])
{
int j = e[i];
if (!st[j])
{
st[j] = true;
if (match[j] == 0 || find(match[j]))
{
match[j] = x;
return true;
}
}
}
return false;
}
// 求最大匹配数,依次枚举第一个集合中的每个点能否匹配第二个集合中的点
int res = 0;
for (int i = 1; i <= n1; i ++ )
{
memset(st, false, sizeof st);
if (find(i)) res ++ ;
}
给定一个二分图,其中左半部包含 n1 个点(编号 1∼n1),右半部包含 n2 个点(编号 1∼n2),二分图共包含 m 条边。
数据保证任意一条边的两个端点都不可能在同一部分中。
请你求出二分图的最大匹配数。
二分图的匹配:给定一个二分图 G,在 G 的一个子图 M 中,M 的边集 {E} 中的任意两条边都不依附于同一个顶点,则称 M 是一个匹配。
二分图的最大匹配:所有匹配中包含边数最多的一组匹配被称为二分图的最大匹配,其边数即为最大匹配数。
第一行包含三个整数 n1、 n2 和 m。
接下来 m 行,每行包含两个整数 u 和 v,表示左半部点集中的点 u 和右半部点集中的点 v 之间存在一条边。
输出一个整数,表示二分图的最大匹配数。
1≤n1,n2≤500,
1≤u≤n1,
1≤v≤n2,
1≤m≤105
2 2 4
1 1
1 2
2 1
2 2
2
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define x first
#define y second
using namespace std;
typedef long long ll;
typedef pair<int, int> PII;
const int N = 100010;
const int MOD = 1000000007;
const int INF = 0x3f3f3f3f;
int gcd(int a, int b){return b ? gcd(b, a % b) : a;}
int lowbit(int x) {return x & -x;}
int n1, n2, m;
int h[N], e[N], ne[N], idx;
int match[N];
bool st[N];
void add(int x, int y)
{
e[idx] = y;
ne[idx] = h[x];
h[x] = idx ++ ;
}
bool find(int x)
{
for(int i = h[x]; i != -1; i = ne[i]){
int j = e[i];
if(!st[j]){
st[j] = true;
if(match[j] == 0 || find(match[j])){
match[j] = x;
return true;
}
}
}
return false;
}
int main()
{
cin >> n1 >> n2 >> m;
memset(h, -1, sizeof h);
for(int i = 0; i < m; i ++ ){
int a, b;
cin >> a >> b;
add(a, b);
}
int res = 0;
for(int i = 1; i <= n1; i ++ ){
memset(st, false, sizeof st);
if(find(i)) res ++ ;
}
cout << res << endl;
return 0;
}