谷歌人工智能写作项目:神经网络伪原创
需要使用类似GAN的生成模型去做写作猫。望采纳GAN的基本原理其实非常简单,这里以生成图片为例进行说明。假设我们有两个网络,G(Generator)和D(Discriminator)。
正如它的名字所暗示的那样,它们的功能分别是:G是一个生成图片的网络,它接收一个随机的噪声z,通过这个噪声生成图片,记做G(z)。D是一个判别网络,判别一张图片是不是“真实的”。
它的输入参数是x,x代表一张图片,输出D(x)代表x为真实图片的概率,如果为1,就代表100%是真实的图片,而输出为0,就代表不可能是真实的图片。
在训练过程中,生成网络G的目标就是尽量生成真实的图片去欺骗判别网络D。而D的目标就是尽量把G生成的图片和真实的图片分别开来。这样,G和D构成了一个动态的“博弈过程”。请点击输入图片描述。
图片分辨率太低,会影响图片的质量。如何把模糊图片转为高清呢?
使用工具:嗨格式图片无损放大器这是一款可以根据我们图像的缺陷找到与之对应的解决办法,通过AI智能技术,可以让图像变的清晰锐化富有细节,而且还不会产生任何的伪影或者光