• Python Matplotlib库:统计图补充


    ✅作者简介:人工智能专业本科在读,喜欢计算机与编程,写博客记录自己的学习历程。
    🍎个人主页:小嗷犬的博客
    🍊个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。
    🥭本文内容:Python Matplotlib库:统计图补充



    引言

    上两期我们讲了 Matplotlib 库的基本语法和基本绘图展示。(参见:Python 数据可视化:Matplotlib库的使用Python Matplotlib库:基本绘图补充

    这期我们来说说如何用 Matplotlib 库绘制常用统计图。


    直方图

    最常用的统计图就是直方图了,我们可以用hist()方法来绘制直方图,它的语法格式如下:

    plt.hist(x, bins=None, range=None, density=False, weights=None, cumulative=False, bottom=None, histtype='bar', align='mid', orientation='vertical', rwidth=None, log=False, color=None, label=None, stacked=False, *, data=None, **kwargs)
    
    • 1

    参数说明:

    参数说明
    x输入数据。
    bins如果bins是整数,则它定义区域中等宽条柱的数量。如果bins是一个序列,它定义箱子边缘,包括第一个箱子的左边缘和最后一个箱子的右边缘;在这种情况下,箱子的间距可能不相等。如果 bins 是一个字符串,则它是’auto’、‘fd’、‘doane’、‘scott’、‘stone’、‘rice’、'sturges’或 'sqrt’之一。
    range条柱的下限和上限范围。下限和上限异常值将被忽略。
    density为True时,绘制并返回条柱密度。
    weightsx 长度相同的权重数组,会为 x 对应位置的值进行加权
    cumulative为True时,每个条柱的数值会累加前面的所有条柱数值。最后一个条柱会累加所有的数值。为负时,累加方向相反。
    bottom每个条柱底部的位置,如果为数字,则每个条柱的底部移动相同的量。如果是数组,则每个箱子都是独立移动的,底部的长度必须与箱子的数量相匹配。
    histtype要绘制的直方图的类型:‘bar’、‘barstacked’、‘step’、‘stepfilled’,默认为’bar’。
    align直方图条柱的水平对齐方式:‘left’、‘mid’、‘right’,默认为’mid’。
    orientation直方图的方向:‘vertical’、‘horizontal’,默认为’vertical’。
    ·········
    **kwargs其他参数。

    代码实例:

    import numpy as np
    import matplotlib.pyplot as plt
    plt.rcParams["font.sans-serif"] = ["SimHei"]  # 设置字体为黑体
    plt.rcParams["axes.unicode_minus"] = False  # 防止负号乱码
    
    plt.figure(figsize=(8, 7))
    plt.suptitle("统计数字出现的次数")
    
    x = 4 + np.random.normal(0, 1.5, 200)
    
    plt.hist(x,linewidth=0.5, edgecolor="white")
    plt.show()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12

    效果图:
    直方图


    箱线图

    箱线图也是常用统计图之一,我们可以用boxplot()方法来绘制箱线图,它的语法格式如下:

    plt.boxplot(x, notch=None, sym=None, vert=None, whis=None, positions=None, widths=None, patch_artist=None, bootstrap=None, usermedians=None, conf_intervals=None, meanline=None, showmeans=None, showcaps=None, showbox=None, showfliers=None, boxprops=None, labels=None, flierprops=None, medianprops=None, meanprops=None, capprops=None, whiskerprops=None, manage_ticks=True, autorange=False, zorder=None, *, data=None)
    
    • 1

    参数说明:

    参数说明
    x输入数据。如果是 2D 数组,则会为 x 中的每一列绘制一个箱线图。如果是一系列一维数组,则会为 x 中的每个数组绘制一个箱线图。
    notch为True时,绘制凹口箱线图。
    sym指定异常点的形状,默认为+号显示。
    vert是否需要将箱线图垂直摆放,默认垂直摆放。
    whis指定上下须与上下四分位的距离,默认为1.5倍的四分位差。
    positions指定箱线图的位置,默认为[0,1,2…]。
    widths指定箱线图的宽度,默认为0.5。
    patch_artist是否填充箱体的颜色。
    meanline是否用线的形式表示均值,默认用点来表示。
    showmeans是否显示均值,默认不显示。
    showcaps是否显示箱线图顶端和末端的两条线,默认显示。
    showbox是否显示箱线图的箱体,默认显示。
    showfliers是否显示异常值,默认显示。
    boxprops设置箱体的属性,如边框色,填充色等。
    labels为箱线图添加标签,类似于图例的作用。
    flierprops设置异常值的属性,如异常点的形状、大小、填充色等。
    medianprops设置中位数的属性,如线的类型、粗细等。
    meanprops设置均值的属性,如点的大小、颜色等。
    capprops设置箱线图顶端和末端线条的属性,如颜色、粗细等。
    whiskerprops设置须的属性,如颜色、粗细、线的类型等。

    代码实例:

    import numpy as np
    import matplotlib.pyplot as plt
    plt.rcParams["font.sans-serif"] = ["SimHei"]  # 设置字体为黑体
    plt.rcParams["axes.unicode_minus"] = False  # 防止负号乱码
    
    plt.figure(figsize=(8, 7))
    
    x = np.random.normal((3, 5, 4), (1.25, 1.00, 1.25), (100, 3))
    plt.boxplot(x, positions=[2, 4, 6], widths=1.5, patch_artist=True,
                    showmeans=False, showfliers=False,
                    medianprops={"color": "white", "linewidth": 0.5},
                    boxprops={"facecolor": "C0", "edgecolor": "white","linewidth": 0.5},
                    whiskerprops={"color": "C0", "linewidth": 1.5},
                    capprops={"color": "C0", "linewidth": 1.5})
    
    plt.show()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16

    效果图:
    箱线图


    误差条图

    Matplotlib 库中,我们可以用errorbar()方法来绘制误差条图,用于表现有一定置信区间的带误差数据,它的语法格式如下:

    plt.errorbar(x, y, yerr=None, xerr=None, fmt='', ecolor=None, elinewidth=None, capsize=None, barsabove=False, lolims=False, uplims=False, xlolims=False, xuplims=False, errorevery=1, capthick=None, *, data=None, **kwargs)
    
    • 1

    参数说明:

    参数说明
    xy数据点的位置坐标。
    xerryerr数据的误差范围。
    fmt数据点的标记样式以及相互之间连接线样式。
    ecolor误差条的线条颜色。
    elinewidth误差条的线条粗细。
    capsize误差条边界横杠的大小。
    capthick误差条边界横杠的厚度。
    ms数据点的大小。
    mfc数据点的颜色。
    mec数据点边缘的颜色。

    代码实例:

    import matplotlib.pyplot as plt
    plt.rcParams["font.sans-serif"] = ["SimHei"]  # 设置字体为黑体
    plt.rcParams["axes.unicode_minus"] = False  # 防止负号乱码
    
    plt.figure(figsize=(8, 7))
    
    x = [2, 4, 6]
    y = [3.6, 5, 4.2]
    yerr = [0.9, 1.2, 0.5]
    plt.errorbar(x, y, yerr, fmt='o', linewidth=2, capsize=6)
    
    plt.show()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12

    效果图:
    误差条图


    小提琴图

    我们可以用violinplot()方法来绘制小提琴图,它的作用与箱线图类似,语法格式如下:

    plt.violinplot(dataset, positions=None, vert=True, widths=0.5, showmeans=False, showextrema=True, showmedians=False, quantiles=None, points=100, bw_method=None, *, data=None)
    
    • 1

    参数说明:

    参数说明
    dataset输入数据。
    positions指定小提琴图位置。
    vert设置小提琴图方向是否是水平,默认值False。
    widths箱体的宽度,默认值0.5。
    showmeans是否显示算术平方根,默认值False,
    showextrema是否显示极值,默认值True
    showmedians是否显示中位数,默认值False
    quantiles指定分位数的位置,取值范围为[0,1]。
    points定义计算核密度估计的点的数量,默认值100。
    bw_method用于估算带宽的方法,默认值scott,可选参数silverman。

    代码实例:

    import numpy as np
    import matplotlib.pyplot as plt
    plt.rcParams["font.sans-serif"] = ["SimHei"]  # 设置字体为黑体
    plt.rcParams["axes.unicode_minus"] = False  # 防止负号乱码
    
    plt.figure(figsize=(8, 7))
    
    x = np.random.normal((3, 5, 4), (0.75, 1.00, 0.75), (200, 3))
    plt.violinplot(x, [2, 4, 6], widths=2, showmeans=True, showmedians=True, showextrema=True)
    
    plt.show()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11

    效果图:
    小提琴图


    尖峰栅格图

    我们可以用eventplot()方法来绘制尖峰栅格图,常在神经科学中用于表示神经事件,也可用于显示多组离散事件的时间或位置,语法格式如下:

    plt.eventplot(positions, orientation='horizontal', lineoffsets=1, linelengths=1, linewidths=None, colors=None, linestyles='solid', *, data=None, **kwargs)
    
    • 1

    参数说明:

    参数说明
    positions一个一维类数组结构定义了一个事件序列的位置;由类数组结构构成的列表可以表示多组事件,每组事件都可以单独设置 lineoffsetslinelengthslinewidthscolorslinestyles等参数。不建议使用二维数据结构。类型为类数组或类数组列表。必备参数。
    orientation时间序列的方向。取值范围为{'horizontal', 'vertical'}。默认值为'horizontal'。可选参数。
    lineoffsets直线中心相对于原点的偏移量,垂直于orientation,如果positions参数为二维结构,该参数可为序列,长度应与positions一致。类型为浮点数或类数组,默认值为1。可选参数。
    linelengths线条的高度的总和(即lineoffset - linelength/2 to lineoffset + linelength/2),如果positions参数为二维结构,该参数可为序列,长度应与positions一致。类型为浮点数或类数组,默认值为1。可选参数。
    linewidths线条的宽度,单位为像素点,如果positions参数为二维结构,该参数可为序列,长度应与positions一致。类型为浮点数或类数组,默认值1.5。可选参数。
    colors线条的颜色,如果positions参数为二维结构,该参数可为序列,长度应与positions一致。类型为颜色值或颜色值列表,默认值为'C0'。可选参数。
    linestyles线条的样式,如果positions参数为二维结构,该参数可为序列,长度应与positions一致。类型为字符串、元组、字符串或元组的列表。默认值为'solid'。有效的字符串范围为['solid', 'dashed', 'dashdot', 'dotted', '-', '--', '-.', ':'],元组的形式应为(offset, onoffseq)onoffseq是一个以像素点为单位的断断续续的元组。
    **kwargs其他参数。

    代码实例:

    import numpy as np
    import matplotlib.pyplot as plt
    plt.rcParams["font.sans-serif"] = ["SimHei"]  # 设置字体为黑体
    plt.rcParams["axes.unicode_minus"] = False  # 防止负号乱码
    
    plt.figure(figsize=(8, 7))
    
    x = [2, 4, 6]
    D = np.random.gamma(4, size=(3, 50))
    plt.eventplot(D, orientation="vertical", lineoffsets=x, linewidth=0.75)
    
    plt.show()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12

    效果图:
    尖峰栅格图


    二维直方图/散点密度图

    我们可以用hist2d()方法来绘制二维直方图/散点密度图,它的作用与散点图类似,语法格式如下:

    plt.hist2d(x, y, bins=10, range=None, density=False, weights=None, cmin=None, cmax=None, *, data=None, **kwargs)
    
    • 1

    参数说明:

    参数说明
    xy数据点坐标。
    其他参数基本同hist()

    详情请参见:matplotlib.axes.Axes.hist2d

    代码实例:

    import numpy as np
    import matplotlib.pyplot as plt
    plt.rcParams["font.sans-serif"] = ["SimHei"]  # 设置字体为黑体
    plt.rcParams["axes.unicode_minus"] = False  # 防止负号乱码
    
    plt.figure(figsize=(8, 7))
    
    x = np.random.randn(5000)
    y = 1.2 * x + np.random.randn(5000) / 3
    
    plt.hist2d(x, y, bins=(np.arange(-3, 3, 0.1), np.arange(-3, 3, 0.1)))
    
    plt.show()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13

    效果图:
    二维直方图


    Hexbin散点图

    我们可以用hexbin()方法来绘制Hexbin散点图,它是一种特殊的散点图,可以清晰的表示大量可能重叠的散点,语法格式如下:

    plt.hexbin(x, y, C=None, gridsize=100, bins=None, xscale='linear', yscale='linear', extent=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, edgecolors='face', reduce_C_function=<function mean>, mincnt=None, marginals=False, *, data=None, **kwargs)
    
    • 1

    参数说明:

    参数说明
    xy表示六边形坐标。
    C表示六边形的值。
    gridsize表示x方向或两个方向上的六边形数量。
    xscale在水平轴上使用线性或对数刻度。
    xycale在垂直轴上使用线性或对数刻度。
    mincnt表示六边形能够显示的最小值。
    marginals用于沿x轴底部和y轴左侧绘制颜色映射为矩形的边际密度。
    extent表示六边形值的极限。

    代码实例:

    import numpy as np
    import matplotlib.pyplot as plt
    plt.rcParams["font.sans-serif"] = ["SimHei"]  # 设置字体为黑体
    plt.rcParams["axes.unicode_minus"] = False  # 防止负号乱码
    
    plt.figure(figsize=(8, 7))
    
    x = np.random.randn(5000)
    y = 1.2 * x + np.random.randn(5000) / 3
    
    plt.hexbin(x, y, gridsize=50)
    
    plt.show()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13

    效果图:
    Hexbin散点图


    扇形图

    最常用的统计图之一,我们可以用pie()方法来绘制扇形图,它的语法格式如下:

    plt.pie(x, explode=None, labels=None, colors=None, autopct=None, pctdistance=0.6, shadow=False, labeldistance=1.1, startangle=0, radius=1, counterclock=True, wedgeprops=None, textprops=None, center=(0, 0), frame=False, rotatelabels=False, *, normalize=True, data=None)
    
    • 1

    参数说明:

    参数说明
    x即每个扇形的占比的序列或数组。
    explode如果不是None,则是一个len(x)长度的数组,指定每一块的突出程度;突出显示,设置每一块分割出来的间隙大小。
    labels为每个扇形提供标签的字符串序列。
    colors为每个扇形提供颜色的字符串序列。
    autopct如果它是一个格式字符串,将格式化标签。如果它是一个函数,它将被调用。
    shadow是否显示阴影。
    startangle从x轴逆时针旋转,饼的旋转角度。
    pctdistance默认为0.6,每个扇形的中心与由autopct生成的文本的开头之间距离与半径的比率,大于1的话会显示在圆外。
    labeldistance默认为1.1,扇形图标签绘制时的径向距离。如果设置为None,则不绘制标签,而是存储在图例中使用。

    代码实例:

    import numpy as np
    import matplotlib.pyplot as plt
    plt.rcParams["font.sans-serif"] = ["SimHei"]  # 设置字体为黑体
    plt.rcParams["axes.unicode_minus"] = False  # 防止负号乱码
    
    plt.figure(figsize=(8, 7))
    
    x = [1, 2, 3, 4]
    colors = plt.get_cmap('Blues')(np.linspace(0.2, 0.7, len(x)))
    
    plt.pie(x, colors=colors, radius=3, center=(4, 4), wedgeprops={"linewidth": 1, "edgecolor": "white"}, frame=True)
    
    plt.show()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13

    效果图:
    扇形图

  • 相关阅读:
    爬虫-接入钉钉机器人
    问题一:idea提示java: -source 1.5 中不支持switch中用字符串
    BeanUtils.copyProperties的用法
    机器阅读理解的双向注意力流
    JS判断浏览器类型
    Java面试之数据库面试题
    (4)点云数据处理学习——其它官网例子
    java-php-python-基于Web的社区商超系统的设计与实现计算机毕业设计
    docker安装postgresSQL和设置自定义数据目录
    【Leetcode】1896. Minimum Cost to Change the Final Value of Expression
  • 原文地址:https://blog.csdn.net/qq_63585949/article/details/126809099