1.名字来源于谷歌
2.最好的卷积层超参数是什么?GoogLeNet表示全部都要
3.Inception块是核心
和3x3,5x5的卷积相比,Inception块有更少的参数个数和计算复杂度
4.有五段,五个stage
5.后面还有其他变种,比如最著名的InceptionV3-ResNet,还有我用的Xception
6.金句:里面的数字不知道怎么来的(原话)
- import torch
- from torch import nn
- from torch.nn import functional as F
- from d2l import torch as d2l
-
-
- class Inception(nn.Module):
- def __init__(self,in_channels,c1,c2,c3,c4, **kwargs):
- #c1,c2,c3,c4是每一条path,要分别设置每一条线路的channel数
- super(Inception,self).__init__(**kwargs)
- #线路1
- self.p1_1 = nn.Conv2d(in_channels,c1,kernel_size=1)
- #线路2,有两个卷积层
- self.p2_1 = nn.Conv2d(in_channels,c2[0],kernel_size=1)
- self.p2_2 = nn.Conv2d(c2[0],c2[1],kernel_size=3,padding=1)
- #线路3
- self.p3_1 = nn.Conv2d(in_channels,c3[0],kernel_size=1)
- self.p3_2 = nn.Conv2d(c3[0],c3[1],kernel_size=5,padding=2)
- #线路4
- self.p4_1 = nn.MaxPool2d(kernel_size=3,stride=1,padding=1)
- self.p4_2 = nn.Conv2d(in_channels,c4,kernel_size=1)
-
-
- def forward(self,x):
- p1 = F.relu(self.p1_1(x)) #第一个path里加relu
- p2 = F.relu(self.p2_2(F.relu(self.p2_1(x)))) #放到第一层以后放第二层里,继续relu
- p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))
- p4 = F.relu(self.p4_2(self.p4_1(x)))
- #在通道维度上连结输出
- return torch.cat((p1,p2,p3,p4),dim=1) #在通道数是1(dim=1)的情况下contact起来
#实现每个模块
- #第一个模块用64个通道,7*7的卷积层
- b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
- nn.ReLU(),
- nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
-
- #第二个模块使用两个卷积层:1.64个通道,1*1卷积层 2.通道数量增加3倍=192,3*3卷积层
- b2 = nn.Sequential(nn.Conv2d(64, 64, kernel_size=1),
- nn.ReLU(),
- nn.Conv2d(64, 192, kernel_size=3, padding=1),
- nn.ReLU(),
- nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
-
- #第三个模块,连接第一个和第二个模块,里面全部都是通道数
- b3 = nn.Sequential(Inception(192, 64, (96, 128), (16, 32), 32),
- Inception(256, 128, (128, 192), (32, 96), 64),
- nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
-
- #第四个模块串联5个inception块,里面的数字不知道怎么来的(原话),都是通道数
- b4 = nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64),
- Inception(512, 160, (112, 224), (24, 64), 64),
- Inception(512, 128, (128, 256), (24, 64), 64),
- Inception(512, 112, (144, 288), (32, 64), 64),
- Inception(528, 256, (160, 320), (32, 128), 128),
- nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
-
- b5 = nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128),
- Inception(832, 384, (192, 384), (48, 128), 128),
- nn.AdaptiveAvgPool2d((1,1)),
- nn.Flatten())
-
-
- net = nn.Sequential(b1,b2,b3,b4,b5,nn.Linear(1024,10)) #输出类别是10,最后输出block是1024维度
#用Fashion-MNIST测试,把图片的高和宽变成了96
- X = torch.rand(size=(1, 1, 96, 96))
- for layer in net:
- X = layer(X)
- print(layer.__class__.__name__,'output shape:\t', X.shape)
Sequential output shape: torch.Size([1, 64, 24, 24]) Sequential output shape: torch.Size([1, 192, 12, 12]) Sequential output shape: torch.Size([1, 480, 6, 6]) Sequential output shape: torch.Size([1, 832, 3, 3]) Sequential output shape: torch.Size([1, 1024]) Linear output shape: torch.Size([1, 10])
#训练模型
- lr,num_epochs, batch_size = 0.1,10,128
- train_iter,test_iter = d2l.load_data_fashion_mnist(batch_size,resize=96)
- d2l.train_ch6(net,train_iter,test_iter,num_epochs,lr,d2l.try_gpu())
#loss 0.236, train acc 0.909, test acc 0.898b
pycharm不能显示图片很遗憾