首先,我们对输入数据使用人体姿态检测器。这抽象了问题,并防止下一步处理诸如视点或照明变化等有害参数。人的行为被表示为时空图,我们将其嵌入(第3.1、3.2小节)并聚类(第3.3小节)到一些潜在空间中。现在,每个动作都表示为一组基本动作的软分配向量。这抽象了动作的基本类型(即细粒度或粗粒度),从而进入学习其分布的最后阶段。我们用于学习软分配向量分布的工具是Dirichlet过程混合(第3.4小节),我们将模型拟合到数据中。然后使用该模型确定动作是否正常。
图的每个节点对应于一个关键点、一个身体关节,每个边表示两个节点之间的某种关系。 存在许多"关键点关系",如解剖学上定义的物理关系(例如,左手腕和肘部连接)和由运动定义的动作关系,这些运动往往在特定动作的上下文中高度相关(例如,跑步时左右膝盖倾向于朝相反方向移动)。图的方向来自于这样一个事实,即一些关系是在优化过程中学习的,并且不是对称的。这种表示的一个好处是紧凑,这对于高效的视频分析非常重要。
为了在时间上扩展,将从视频序列中提取的姿势关键点表示为姿势图的时间序列。 时间姿势图是人体关节位置的时间序列。时域邻接可以类似地通过连接连续帧中的关节来定义,允许我们利用姿势图序列的空间和时间维度执行图卷积运算
我们提出了一种基于深度时态图自动编码器的结构,用于嵌入时态姿态图。 基于图2所示ST-GCN的基本块设计,我们将基本GCN算子替换为新的空间注意力图卷积,如下所示。
我们提出了一个新的图算子,如图3所示,它使用三种类型的邻接矩阵:静态、全局学习和推断(基于注意力)。每个邻接类型使用单独的权重应用其自己的GCN。
GCN的输出按通道维度堆叠。采用1×1卷积作为加权叠加输出的可学习缩减度量,并提供所需的输出信道数。
三个邻接矩阵捕捉了模型的不同方面:
(i)使用身体部位连通性作为优先于节点关系,使用静态邻接矩阵表示。
(ii)由全局邻接矩阵捕获的数据集级关键点关系,以及
(iii)由推断邻接矩阵获取的样本特定关系。最后,可学习约简度量对不同的输出进行加权
为了构建我们的底层动作词典,我们采用训练集样本,并将它们联合嵌入和聚类到一些潜在空间中。然后,每个样本由其分配给每个底层聚类的概率表示。选择目标是为了提供不同的潜在集群,这些集群上存在动作。
我们采用了深嵌入聚类的概念[32],用我们的ST-GCAE架构对时间图进行聚类。所提出的聚类模型由编码器、解码器和软聚类层三部分组成。
具体地说,我们的ST-GCAE模型保持了图的结构,但使用了较大的时间步长和不断增加的通道数来将输入序列压缩为潜在向量。解码器使用时间上采样层和额外的图卷积块,用于逐渐恢复原始信道计数和时间维度。
ST-GCAE的嵌入是数据聚类的起点。在我们的聚类优化阶段,对基于重构的初始嵌入进行微调,以达到最终的聚类优化嵌入。
符号 | 表示 |
---|---|
x i x_i xi | 输入示例 |
z i z_i zi | 编码器的潜在嵌入 |
y i y_i yi | 使用聚类层计算的软聚类分配 |
Θ Θ Θ | 聚类层的参数 |
p i k p_{ik} pik | probability for the i-th sample to be assigned to the k-th cluster |
我们采用[32]提出的聚类目标和优化算法。聚类目标是最小化当前模型概率聚类预测P和目标分布Q之间的KL散度:
目标分布旨在通过标准化和将每个值推到更接近0或1的值来加强当前的群集分配。反复应用将P转换为Q的函数将最终导致硬分配向量。使用以下等式计算目标分布的每个成员:
聚类层由为编码训练集计算的K均值质心初始化。优化以期望最大化(EM)的方式进行。
在期望步骤期间,整个模型是固定的,并且目标分布Q被更新。在最大化阶段,优化模型以最小化聚类损失Lcluster。
@staticmethod
def target_distribution(q):
weight = q ** 2 / q.sum(0)
w = weight.t() / weight.sum(1)
w = w.t()
return w
该模型支持两种类型的多模分布。一个是集群分配级别;另一个是在软分配向量级别。例如,一个动作可能被分配给多个集群(集群级分配),导致多模式软分配向量。
软分配向量本身(捕获动作)也可以通过多模态分布建模。
Dirichlet过程混合模型(DPMM)是评估比例数据分布的一种有效方法。它满足我们所需的设置:(i)估计(拟合)阶段,在此阶段,一组分布参数为评估,和(ii)推理阶段,为每个嵌入样本使用拟合模型。彻底的Blei和Jordan[4]给出了该模型的概述。
Dirichlet过程混合模型(DPMM)是评估比例数据分布的有效方法。它符合我们要求的设置:
(i) 估计(拟合)阶段,在此期间评估一组分布参数,以及
(ii)推理阶段,使用拟合模型为每个嵌入样本提供分数。Blei和Jordan[4]对模型进行了全面概述。
DPMM是单峰Dirichlet分布的常见混合扩展,并使用Dirichllet过程,这DirichletDistribution的无限维扩展。该模型是多模态的,能够将每个模式捕获为混合成分。拟合模型具有多个模式,每个模式表示对应于一个正常行为的一组比例。在测试时,使用拟合模型通过其对数概率对每个样本进行评分。[4,8]中提供了关于DPMM使用的进一步解释和讨论。
该模型的训练阶段包括两个阶段,一个是自动编码器的预训练阶段,其中网络的聚类分支保持不变,另一个是微调阶段,其中嵌入和聚类都得到优化。具体而言:
Pre-Training: 该模型通过最小化重建损失(表示为Lrec)来学习编码和重建序列,Lrec是原始瞬时位姿图和ST-GCAE重建的位姿图之间的L2损失
Fine-Tuning:
该模型优化了由重建损失和聚类损失组成的组合损失函数。
进行优化,使得聚类层优化为w.r.t.Lcluster,解码器优化为w.r.t.Lrec,编码器优化为w.r.t.两者。
集群层的初始化是通过Kmeans完成的。如[9]所示,当编码器针对这两种损失进行优化时,解码器保持不变,并充当正则化器,以保持编码器的嵌入质量。
本阶段的综合损失为:
def calc_reg_loss(model, reg_type='l2', avg=True):
reg_loss = None
parameters = list(param for name, param in model.named_parameters() if 'bias' not in name)
num_params = len(parameters)
if reg_type.lower() == 'l2':
for param in parameters:
if reg_loss is None:
reg_loss = 0.5 * torch.sum(param ** 2)
else:
reg_loss = reg_loss + 0.5 * param.norm(2) ** 2
if avg:
reg_loss /= num_params
return reg_loss
else:
return torch.tensor(0.0, device=model.device)
PatchModel(
(patch_fe): Identity()
(gcae): GCAE(
(data_bn): BatchNorm1d(54, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): ReLU(inplace=True)
(st_gcn_enc): ModuleList(
(0): ConvBlock(
(act): ReLU(inplace=True)
(gcn): PyGeoConv(
(g_conv): SAGC(
(conv_a): ModuleList(
(0): Conv2d(3, 8, kernel_size=(1, 1), stride=(1, 1))
(1): Conv2d(3, 8, kernel_size=(1, 1), stride=(1, 1))
(2): Conv2d(3, 8, kernel_size=(1, 1), stride=(1, 1))
)
(conv_b): ModuleList(
(0): Conv2d(3, 8, kernel_size=(1, 1), stride=(1, 1))
(1): Conv2d(3, 8, kernel_size=(1, 1), stride=(1, 1))
(2): Conv2d(3, 8, kernel_size=(1, 1), stride=(1, 1))
)
(gconv): ModuleList(
(0): GraphConvBR(
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): ReLU(inplace=True)
)
(1): GraphConvBR(
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): ReLU(inplace=True)
)
(2): GraphConvBR(
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): ReLU(inplace=True)
)
)
(down): Sequential(
(0): Conv2d(3, 32, kernel_size=(1, 1), stride=(1, 1))
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(soft): Softmax(dim=-2)
(relu): CELU(alpha=0.01)
(expanding_conv): Conv2d(3, 288, kernel_size=(1, 1), stride=(1, 1), bias=False)
(reduction_conv): Conv2d(96, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(tcn): Sequential(
(0): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace=True)
(2): Conv2d(32, 32, kernel_size=(9, 1), stride=(1, 1), padding=(4, 0))
(3): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): Dropout(p=0.3, inplace=True)
)
)
(1): ConvBlock(
(act): ReLU(inplace=True)
(gcn): PyGeoConv(
(g_conv): SAGC(
(conv_a): ModuleList(
(0): Conv2d(32, 8, kernel_size=(1, 1), stride=(1, 1))
(1): Conv2d(32, 8, kernel_size=(1, 1), stride=(1, 1))
(2): Conv2d(32, 8, kernel_size=(1, 1), stride=(1, 1))
)
(conv_b): ModuleList(
(0): Conv2d(32, 8, kernel_size=(1, 1), stride=(1, 1))
(1): Conv2d(32, 8, kernel_size=(1, 1), stride=(1, 1))
(2): Conv2d(32, 8, kernel_size=(1, 1), stride=(1, 1))
)
(gconv): ModuleList(
(0): GraphConvBR(
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): ReLU(inplace=True)
)
(1): GraphConvBR(
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): ReLU(inplace=True)
)
(2): GraphConvBR(
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): ReLU(inplace=True)
)
)
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(soft): Softmax(dim=-2)
(relu): CELU(alpha=0.01)
(expanding_conv): Conv2d(32, 288, kernel_size=(1, 1), stride=(1, 1), bias=False)
(reduction_conv): Conv2d(96, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(tcn): Sequential(
(0): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace=True)
(2): Conv2d(32, 32, kernel_size=(9, 1), stride=(1, 1), padding=(4, 0))
(3): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): Dropout(p=0.3, inplace=True)
)
)
(2): ConvBlock(
(act): ReLU(inplace=True)
(gcn): PyGeoConv(
(g_conv): SAGC(
(conv_a): ModuleList(
(0): Conv2d(32, 8, kernel_size=(1, 1), stride=(1, 1))
(1): Conv2d(32, 8, kernel_size=(1, 1), stride=(1, 1))
(2): Conv2d(32, 8, kernel_size=(1, 1), stride=(1, 1))
)
(conv_b): ModuleList(
(0): Conv2d(32, 8, kernel_size=(1, 1), stride=(1, 1))
(1): Conv2d(32, 8, kernel_size=(1, 1), stride=(1, 1))
(2): Conv2d(32, 8, kernel_size=(1, 1), stride=(1, 1))
)
(gconv): ModuleList(
(0): GraphConvBR(
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): ReLU(inplace=True)
)
(1): GraphConvBR(
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): ReLU(inplace=True)
)
(2): GraphConvBR(
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): ReLU(inplace=True)
)
)
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(soft): Softmax(dim=-2)
(relu): CELU(alpha=0.01)
(expanding_conv): Conv2d(32, 288, kernel_size=(1, 1), stride=(1, 1), bias=False)
(reduction_conv): Conv2d(96, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(tcn): Sequential(
(0): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace=True)
(2): Conv2d(32, 32, kernel_size=(9, 1), stride=(2, 1), padding=(4, 0))
(3): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): Dropout(p=0.3, inplace=True)
)
(residual): Sequential(
(0): Conv2d(32, 32, kernel_size=(1, 1), stride=(2, 1))
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(3): ConvBlock(
(act): ReLU(inplace=True)
(gcn): PyGeoConv(
(g_conv): SAGC(
(conv_a): ModuleList(
(0): Conv2d(32, 12, kernel_size=(1, 1), stride=(1, 1))
(1): Conv2d(32, 12, kernel_size=(1, 1), stride=(1, 1))
(2): Conv2d(32, 12, kernel_size=(1, 1), stride=(1, 1))
)
(conv_b): ModuleList(
(0): Conv2d(32, 12, kernel_size=(1, 1), stride=(1, 1))
(1): Conv2d(32, 12, kernel_size=(1, 1), stride=(1, 1))
(2): Conv2d(32, 12, kernel_size=(1, 1), stride=(1, 1))
)
(gconv): ModuleList(
(0): GraphConvBR(
(bn): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): ReLU(inplace=True)
)
(1): GraphConvBR(
(bn): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): ReLU(inplace=True)
)
(2): GraphConvBR(
(bn): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): ReLU(inplace=True)
)
)
(down): Sequential(
(0): Conv2d(32, 48, kernel_size=(1, 1), stride=(1, 1))
(1): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(bn): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(soft): Softmax(dim=-2)
(relu): CELU(alpha=0.01)
(expanding_conv): Conv2d(32, 432, kernel_size=(1, 1), stride=(1, 1), bias=False)
(reduction_conv): Conv2d(144, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(tcn): Sequential(
(0): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace=True)
(2): Conv2d(48, 48, kernel_size=(9, 1), stride=(1, 1), padding=(4, 0))
(3): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): Dropout(p=0.3, inplace=True)
)
(residual): Sequential(
(0): Conv2d(32, 48, kernel_size=(1, 1), stride=(1, 1))
(1): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(4): ConvBlock(
(act): ReLU(inplace=True)
(gcn): PyGeoConv(
(g_conv): SAGC(
(conv_a): ModuleList(
(0): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
(1): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
(2): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
)
(conv_b): ModuleList(
(0): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
(1): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
(2): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
)
(gconv): ModuleList(
(0): GraphConvBR(
(bn): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): ReLU(inplace=True)
)
(1): GraphConvBR(
(bn): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): ReLU(inplace=True)
)
(2): GraphConvBR(
(bn): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): ReLU(inplace=True)
)
)
(bn): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(soft): Softmax(dim=-2)
(relu): CELU(alpha=0.01)
(expanding_conv): Conv2d(48, 432, kernel_size=(1, 1), stride=(1, 1), bias=False)
(reduction_conv): Conv2d(144, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(tcn): Sequential(
(0): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace=True)
(2): Conv2d(48, 48, kernel_size=(9, 1), stride=(1, 1), padding=(4, 0))
(3): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): Dropout(p=0.3, inplace=True)
)
)
(5): ConvBlock(
(act): ReLU(inplace=True)
(gcn): PyGeoConv(
(g_conv): SAGC(
(conv_a): ModuleList(
(0): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
(1): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
(2): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
)
(conv_b): ModuleList(
(0): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
(1): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
(2): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
)
(gconv): ModuleList(
(0): GraphConvBR(
(bn): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): ReLU(inplace=True)
)
(1): GraphConvBR(
(bn): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): ReLU(inplace=True)
)
(2): GraphConvBR(
(bn): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): ReLU(inplace=True)
)
)
(bn): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(soft): Softmax(dim=-2)
(relu): CELU(alpha=0.01)
(expanding_conv): Conv2d(48, 432, kernel_size=(1, 1), stride=(1, 1), bias=False)
(reduction_conv): Conv2d(144, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(tcn): Sequential(
(0): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace=True)
(2): Conv2d(48, 48, kernel_size=(9, 1), stride=(3, 1), padding=(4, 0))
(3): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): Dropout(p=0.3, inplace=True)
)
(residual): Sequential(
(0): Conv2d(48, 48, kernel_size=(1, 1), stride=(3, 1))
(1): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(6): ConvBlock(
(act): ReLU(inplace=True)
(gcn): PyGeoConv(
(g_conv): SAGC(
(conv_a): ModuleList(
(0): Conv2d(48, 16, kernel_size=(1, 1), stride=(1, 1))
(1): Conv2d(48, 16, kernel_size=(1, 1), stride=(1, 1))
(2): Conv2d(48, 16, kernel_size=(1, 1), stride=(1, 1))
)
(conv_b): ModuleList(
(0): Conv2d(48, 16, kernel_size=(1, 1), stride=(1, 1))
(1): Conv2d(48, 16, kernel_size=(1, 1), stride=(1, 1))
(2): Conv2d(48, 16, kernel_size=(1, 1), stride=(1, 1))
)
(gconv): ModuleList(
(0): GraphConvBR(
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): ReLU(inplace=True)
)
(1): GraphConvBR(
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): ReLU(inplace=True)
)
(2): GraphConvBR(
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): ReLU(inplace=True)
)
)
(down): Sequential(
(0): Conv2d(48, 64, kernel_size=(1, 1), stride=(1, 1))
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(soft): Softmax(dim=-2)
(relu): CELU(alpha=0.01)
(expanding_conv): Conv2d(48, 576, kernel_size=(1, 1), stride=(1, 1), bias=False)
(reduction_conv): Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(tcn): Sequential(
(0): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace=True)
(2): Conv2d(64, 64, kernel_size=(9, 1), stride=(1, 1), padding=(4, 0))
(3): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): Dropout(p=0.3, inplace=True)
)
(residual): Sequential(
(0): Conv2d(48, 64, kernel_size=(1, 1), stride=(1, 1))
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(7): ConvBlock(
(act): ReLU(inplace=True)
(gcn): PyGeoConv(
(g_conv): SAGC(
(conv_a): ModuleList(
(0): Conv2d(64, 16, kernel_size=(1, 1), stride=(1, 1))
(1): Conv2d(64, 16, kernel_size=(1, 1), stride=(1, 1))
(2): Conv2d(64, 16, kernel_size=(1, 1), stride=(1, 1))
)
(conv_b): ModuleList(
(0): Conv2d(64, 16, kernel_size=(1, 1), stride=(1, 1))
(1): Conv2d(64, 16, kernel_size=(1, 1), stride=(1, 1))
(2): Conv2d(64, 16, kernel_size=(1, 1), stride=(1, 1))
)
(gconv): ModuleList(
(0): GraphConvBR(
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): ReLU(inplace=True)
)
(1): GraphConvBR(
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): ReLU(inplace=True)
)
(2): GraphConvBR(
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): ReLU(inplace=True)
)
)
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(soft): Softmax(dim=-2)
(relu): CELU(alpha=0.01)
(expanding_conv): Conv2d(64, 576, kernel_size=(1, 1), stride=(1, 1), bias=False)
(reduction_conv): Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(tcn): Sequential(
(0): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace=True)
(2): Conv2d(64, 64, kernel_size=(9, 1), stride=(1, 1), padding=(4, 0))
(3): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): Dropout(p=0.3, inplace=True)
)
)
(8): ConvBlock(
(act): ReLU(inplace=True)
(gcn): PyGeoConv(
(g_conv): SAGC(
(conv_a): ModuleList(
(0): Conv2d(64, 8, kernel_size=(1, 1), stride=(1, 1))
(1): Conv2d(64, 8, kernel_size=(1, 1), stride=(1, 1))
(2): Conv2d(64, 8, kernel_size=(1, 1), stride=(1, 1))
)
(conv_b): ModuleList(
(0): Conv2d(64, 8, kernel_size=(1, 1), stride=(1, 1))
(1): Conv2d(64, 8, kernel_size=(1, 1), stride=(1, 1))
(2): Conv2d(64, 8, kernel_size=(1, 1), stride=(1, 1))
)
(gconv): ModuleList(
(0): GraphConvBR(
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): ReLU(inplace=True)
)
(1): GraphConvBR(
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): ReLU(inplace=True)
)
(2): GraphConvBR(
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): ReLU(inplace=True)
)
)
(down): Sequential(
(0): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1))
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(soft): Softmax(dim=-2)
(relu): CELU(alpha=0.01)
(expanding_conv): Conv2d(64, 288, kernel_size=(1, 1), stride=(1, 1), bias=False)
(reduction_conv): Conv2d(96, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(tcn): Sequential(
(0): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace=True)
(2): Conv2d(32, 32, kernel_size=(9, 1), stride=(1, 1), padding=(4, 0))
(3): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): Dropout(p=0.3, inplace=True)
)
(residual): Sequential(
(0): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1))
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
)
(dec_final_gcn): ConvBlock(
(act): ReLU(inplace=True)
(gcn): PyGeoConv(
(g_conv): ConvTemporalGraphical(
(conv): Conv2d(48, 9, kernel_size=(1, 1), stride=(1, 1))
)
)
(tcn): Sequential(
(0): BatchNorm2d(3, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace=True)
(2): Conv2d(3, 3, kernel_size=(9, 1), stride=(1, 1), padding=(4, 0))
(3): Identity()
(4): Dropout(p=0.3, inplace=True)
)
)
(st_gcn_dec): ModuleList(
(0): Upsample(scale_factor=(3.0, 1.0), mode=bilinear)
(1): ConvBlock(
(act): ReLU(inplace=True)
(gcn): PyGeoConv(
(g_conv): SAGC(
(conv_a): ModuleList(
(0): Conv2d(32, 16, kernel_size=(1, 1), stride=(1, 1))
(1): Conv2d(32, 16, kernel_size=(1, 1), stride=(1, 1))
(2): Conv2d(32, 16, kernel_size=(1, 1), stride=(1, 1))
)
(conv_b): ModuleList(
(0): Conv2d(32, 16, kernel_size=(1, 1), stride=(1, 1))
(1): Conv2d(32, 16, kernel_size=(1, 1), stride=(1, 1))
(2): Conv2d(32, 16, kernel_size=(1, 1), stride=(1, 1))
)
(gconv): ModuleList(
(0): GraphConvBR(
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): ReLU(inplace=True)
)
(1): GraphConvBR(
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): ReLU(inplace=True)
)
(2): GraphConvBR(
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): ReLU(inplace=True)
)
)
(down): Sequential(
(0): Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1))
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(soft): Softmax(dim=-2)
(relu): CELU(alpha=0.01)
(expanding_conv): Conv2d(32, 576, kernel_size=(1, 1), stride=(1, 1), bias=False)
(reduction_conv): Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(tcn): Sequential(
(0): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace=True)
(2): Conv2d(64, 64, kernel_size=(9, 1), stride=(1, 1), padding=(4, 0))
(3): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): Dropout(p=0, inplace=True)
)
(residual): Sequential(
(0): Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1))
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(2): ConvBlock(
(act): ReLU(inplace=True)
(gcn): PyGeoConv(
(g_conv): SAGC(
(conv_a): ModuleList(
(0): Conv2d(64, 16, kernel_size=(1, 1), stride=(1, 1))
(1): Conv2d(64, 16, kernel_size=(1, 1), stride=(1, 1))
(2): Conv2d(64, 16, kernel_size=(1, 1), stride=(1, 1))
)
(conv_b): ModuleList(
(0): Conv2d(64, 16, kernel_size=(1, 1), stride=(1, 1))
(1): Conv2d(64, 16, kernel_size=(1, 1), stride=(1, 1))
(2): Conv2d(64, 16, kernel_size=(1, 1), stride=(1, 1))
)
(gconv): ModuleList(
(0): GraphConvBR(
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): ReLU(inplace=True)
)
(1): GraphConvBR(
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): ReLU(inplace=True)
)
(2): GraphConvBR(
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): ReLU(inplace=True)
)
)
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(soft): Softmax(dim=-2)
(relu): CELU(alpha=0.01)
(expanding_conv): Conv2d(64, 576, kernel_size=(1, 1), stride=(1, 1), bias=False)
(reduction_conv): Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(tcn): Sequential(
(0): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace=True)
(2): Conv2d(64, 64, kernel_size=(9, 1), stride=(1, 1), padding=(4, 0))
(3): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): Dropout(p=0, inplace=True)
)
)
(3): ConvBlock(
(act): ReLU(inplace=True)
(gcn): PyGeoConv(
(g_conv): SAGC(
(conv_a): ModuleList(
(0): Conv2d(64, 12, kernel_size=(1, 1), stride=(1, 1))
(1): Conv2d(64, 12, kernel_size=(1, 1), stride=(1, 1))
(2): Conv2d(64, 12, kernel_size=(1, 1), stride=(1, 1))
)
(conv_b): ModuleList(
(0): Conv2d(64, 12, kernel_size=(1, 1), stride=(1, 1))
(1): Conv2d(64, 12, kernel_size=(1, 1), stride=(1, 1))
(2): Conv2d(64, 12, kernel_size=(1, 1), stride=(1, 1))
)
(gconv): ModuleList(
(0): GraphConvBR(
(bn): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): ReLU(inplace=True)
)
(1): GraphConvBR(
(bn): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): ReLU(inplace=True)
)
(2): GraphConvBR(
(bn): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): ReLU(inplace=True)
)
)
(down): Sequential(
(0): Conv2d(64, 48, kernel_size=(1, 1), stride=(1, 1))
(1): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(bn): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(soft): Softmax(dim=-2)
(relu): CELU(alpha=0.01)
(expanding_conv): Conv2d(64, 432, kernel_size=(1, 1), stride=(1, 1), bias=False)
(reduction_conv): Conv2d(144, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(tcn): Sequential(
(0): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace=True)
(2): Conv2d(48, 48, kernel_size=(9, 1), stride=(1, 1), padding=(4, 0))
(3): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): Dropout(p=0, inplace=True)
)
(residual): Sequential(
(0): Conv2d(64, 48, kernel_size=(1, 1), stride=(1, 1))
(1): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(4): Upsample(scale_factor=(2.0, 1.0), mode=bilinear)
(5): ConvBlock(
(act): ReLU(inplace=True)
(gcn): PyGeoConv(
(g_conv): SAGC(
(conv_a): ModuleList(
(0): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
(1): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
(2): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
)
(conv_b): ModuleList(
(0): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
(1): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
(2): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
)
(gconv): ModuleList(
(0): GraphConvBR(
(bn): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): ReLU(inplace=True)
)
(1): GraphConvBR(
(bn): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): ReLU(inplace=True)
)
(2): GraphConvBR(
(bn): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): ReLU(inplace=True)
)
)
(bn): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(soft): Softmax(dim=-2)
(relu): CELU(alpha=0.01)
(expanding_conv): Conv2d(48, 432, kernel_size=(1, 1), stride=(1, 1), bias=False)
(reduction_conv): Conv2d(144, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(tcn): Sequential(
(0): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace=True)
(2): Conv2d(48, 48, kernel_size=(9, 1), stride=(1, 1), padding=(4, 0))
(3): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): Dropout(p=0, inplace=True)
)
)
(6): ConvBlock(
(act): ReLU(inplace=True)
(gcn): PyGeoConv(
(g_conv): SAGC(
(conv_a): ModuleList(
(0): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
(1): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
(2): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
)
(conv_b): ModuleList(
(0): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
(1): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
(2): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
)
(gconv): ModuleList(
(0): GraphConvBR(
(bn): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): ReLU(inplace=True)
)
(1): GraphConvBR(
(bn): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): ReLU(inplace=True)
)
(2): GraphConvBR(
(bn): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): ReLU(inplace=True)
)
)
(bn): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(soft): Softmax(dim=-2)
(relu): CELU(alpha=0.01)
(expanding_conv): Conv2d(48, 432, kernel_size=(1, 1), stride=(1, 1), bias=False)
(reduction_conv): Conv2d(144, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(tcn): Sequential(
(0): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace=True)
(2): Conv2d(48, 48, kernel_size=(9, 1), stride=(1, 1), padding=(4, 0))
(3): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): Dropout(p=0, inplace=True)
)
)
)
)
)