• 骨架图算法


    骨架图算法

    在这里插入图片描述

    • 我们提出了一种用于人类行为异常检测的新方法。我们的方法直接适用于可以从输入视频序列计算的人体姿势图。这使得分析独立于扰动参数,如视点或照明。我们将这些图映射到一个潜在空间并将它们聚类。然后,每个操作都由其对每个聚类的软赋值来表示。这为数据提供了一种“词袋”表示,其中每个动作都由其与一组基本动作词的相似性来表示。然后,我们使用基于狄利克雷过程的混合物,这对于处理比例数据(例如我们的软赋值向量)很有用,以确定一个动作是否正常。
    • 在这里插入图片描述

    首先,我们对输入数据使用人体姿态检测器。这抽象了问题,并防止下一步处理诸如视点或照明变化等有害参数。人的行为被表示为时空图,我们将其嵌入(第3.1、3.2小节)并聚类(第3.3小节)到一些潜在空间中。现在,每个动作都表示为一组基本动作的软分配向量。这抽象了动作的基本类型(即细粒度或粗粒度),从而进入学习其分布的最后阶段。我们用于学习软分配向量分布的工具是Dirichlet过程混合(第3.4小节),我们将模型拟合到数据中。然后使用该模型确定动作是否正常。

    图的每个节点对应于一个关键点、一个身体关节,每个边表示两个节点之间的某种关系。 存在许多"关键点关系",如解剖学上定义的物理关系(例如,左手腕和肘部连接)和由运动定义的动作关系,这些运动往往在特定动作的上下文中高度相关(例如,跑步时左右膝盖倾向于朝相反方向移动)。图的方向来自于这样一个事实,即一些关系是在优化过程中学习的,并且不是对称的。这种表示的一个好处是紧凑,这对于高效的视频分析非常重要。
    为了在时间上扩展,将从视频序列中提取的姿势关键点表示为姿势图的时间序列。 时间姿势图是人体关节位置的时间序列。时域邻接可以类似地通过连接连续帧中的关节来定义,允许我们利用姿势图序列的空间和时间维度执行图卷积运算

    我们提出了一种基于深度时态图自动编码器的结构,用于嵌入时态姿态图。 基于图2所示ST-GCN的基本块设计,我们将基本GCN算子替换为新的空间注意力图卷积,如下所示。

    3.2. Spatial Attention Graph Convolution

    我们提出了一个新的图算子,如图3所示,它使用三种类型的邻接矩阵:静态、全局学习和推断(基于注意力)。每个邻接类型使用单独的权重应用其自己的GCN。

    GCN的输出按通道维度堆叠。采用1×1卷积作为加权叠加输出的可学习缩减度量,并提供所需的输出信道数。

    三个邻接矩阵捕捉了模型的不同方面:
    (i)使用身体部位连通性作为优先于节点关系,使用静态邻接矩阵表示。
    (ii)由全局邻接矩阵捕获的数据集级关键点关系,以及
    (iii)由推断邻接矩阵获取的样本特定关系。最后,可学习约简度量对不同的输出进行加权
    在这里插入图片描述

    • 后续段落介绍了静态、全局学习和推断的邻接矩阵的设置方法,即图3中的A,B和C,在此略过。

    3.3. Deep Embedded Clustering

    为了构建我们的底层动作词典,我们采用训练集样本,并将它们联合嵌入和聚类到一些潜在空间中。然后,每个样本由其分配给每个底层聚类的概率表示。选择目标是为了提供不同的潜在集群,这些集群上存在动作。

    我们采用了深嵌入聚类的概念[32],用我们的ST-GCAE架构对时间图进行聚类。所提出的聚类模型由编码器、解码器和软聚类层三部分组成。

    具体地说,我们的ST-GCAE模型保持了图的结构,但使用了较大的时间步长和不断增加的通道数来将输入序列压缩为潜在向量。解码器使用时间上采样层和额外的图卷积块,用于逐渐恢复原始信道计数和时间维度。

    ST-GCAE的嵌入是数据聚类的起点。在我们的聚类优化阶段,对基于重构的初始嵌入进行微调,以达到最终的聚类优化嵌入。

    符号表示
    x i x_i xi输入示例
    z i z_i zi编码器的潜在嵌入
    y i y_i yi使用聚类层计算的软聚类分配
    Θ Θ Θ聚类层的参数
    p i k p_{ik} pikprobability for the i-th sample to be assigned to the k-th cluster

    在这里插入图片描述

    我们采用[32]提出的聚类目标和优化算法。聚类目标是最小化当前模型概率聚类预测P和目标分布Q之间的KL散度:

    在这里插入图片描述
    目标分布旨在通过标准化和将每个值推到更接近0或1的值来加强当前的群集分配。反复应用将P转换为Q的函数将最终导致硬分配向量。使用以下等式计算目标分布的每个成员:

    在这里插入图片描述
    聚类层由为编码训练集计算的K均值质心初始化。优化以期望最大化(EM)的方式进行。
    在期望步骤期间,整个模型是固定的,并且目标分布Q被更新。在最大化阶段,优化模型以最小化聚类损失Lcluster

        @staticmethod
        def target_distribution(q):
            weight = q ** 2 / q.sum(0)
            w = weight.t() / weight.sum(1)
            w = w.t()
            return w
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6

    3.4. Normality Scoring

    该模型支持两种类型的多模分布。一个是集群分配级别;另一个是在软分配向量级别。例如,一个动作可能被分配给多个集群(集群级分配),导致多模式软分配向量。
    软分配向量本身(捕获动作)也可以通过多模态分布建模。

    Dirichlet过程混合模型(DPMM)是评估比例数据分布的一种有效方法。它满足我们所需的设置:(i)估计(拟合)阶段,在此阶段,一组分布参数为评估,和(ii)推理阶段,为每个嵌入样本使用拟合模型。彻底的Blei和Jordan[4]给出了该模型的概述。

    Dirichlet过程混合模型(DPMM)是评估比例数据分布的有效方法。它符合我们要求的设置:
    (i) 估计(拟合)阶段,在此期间评估一组分布参数,以及
    (ii)推理阶段,使用拟合模型为每个嵌入样本提供分数。Blei和Jordan[4]对模型进行了全面概述。

    DPMM是单峰Dirichlet分布的常见混合扩展,并使用Dirichllet过程,这DirichletDistribution的无限维扩展。该模型是多模态的,能够将每个模式捕获为混合成分。拟合模型具有多个模式,每个模式表示对应于一个正常行为的一组比例。在测试时,使用拟合模型通过其对数概率对每个样本进行评分。[4,8]中提供了关于DPMM使用的进一步解释和讨论。

    3.5. Training

    该模型的训练阶段包括两个阶段,一个是自动编码器的预训练阶段,其中网络的聚类分支保持不变,另一个是微调阶段,其中嵌入和聚类都得到优化。具体而言:

    Pre-Training: 该模型通过最小化重建损失(表示为Lrec)来学习编码和重建序列,Lrec是原始瞬时位姿图和ST-GCAE重建的位姿图之间的L2损失

    Fine-Tuning:
    该模型优化了由重建损失和聚类损失组成的组合损失函数。
    进行优化,使得聚类层优化为w.r.t.Lcluster,解码器优化为w.r.t.Lrec,编码器优化为w.r.t.两者。
    集群层的初始化是通过Kmeans完成的。如[9]所示,当编码器针对这两种损失进行优化时,解码器保持不变,并充当正则化器,以保持编码器的嵌入质量。
    本阶段的综合损失为:

    在这里插入图片描述

    结果

    在这里插入图片描述

    实现细节

    在这里插入图片描述
    在这里插入图片描述

    def calc_reg_loss(model, reg_type='l2', avg=True):
        reg_loss = None
        parameters = list(param for name, param in model.named_parameters() if 'bias' not in name)
        num_params = len(parameters)
        if reg_type.lower() == 'l2':
            for param in parameters:
                if reg_loss is None:
                    reg_loss = 0.5 * torch.sum(param ** 2)
                else:
                    reg_loss = reg_loss + 0.5 * param.norm(2) ** 2
    
            if avg:
                reg_loss /= num_params
            return reg_loss
        else:
            return torch.tensor(0.0, device=model.device)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16

    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

    PatchModel(
      (patch_fe): Identity()
      (gcae): GCAE(
        (data_bn): BatchNorm1d(54, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (act): ReLU(inplace=True)
        (st_gcn_enc): ModuleList(
          (0): ConvBlock(
            (act): ReLU(inplace=True)
            (gcn): PyGeoConv(
              (g_conv): SAGC(
                (conv_a): ModuleList(
                  (0): Conv2d(3, 8, kernel_size=(1, 1), stride=(1, 1))
                  (1): Conv2d(3, 8, kernel_size=(1, 1), stride=(1, 1))
                  (2): Conv2d(3, 8, kernel_size=(1, 1), stride=(1, 1))
                )
                (conv_b): ModuleList(
                  (0): Conv2d(3, 8, kernel_size=(1, 1), stride=(1, 1))
                  (1): Conv2d(3, 8, kernel_size=(1, 1), stride=(1, 1))
                  (2): Conv2d(3, 8, kernel_size=(1, 1), stride=(1, 1))
                )
                (gconv): ModuleList(
                  (0): GraphConvBR(
                    (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                    (act): ReLU(inplace=True)
                  )
                  (1): GraphConvBR(
                    (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                    (act): ReLU(inplace=True)
                  )
                  (2): GraphConvBR(
                    (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                    (act): ReLU(inplace=True)
                  )
                )
                (down): Sequential(
                  (0): Conv2d(3, 32, kernel_size=(1, 1), stride=(1, 1))
                  (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                )
                (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                (soft): Softmax(dim=-2)
                (relu): CELU(alpha=0.01)
                (expanding_conv): Conv2d(3, 288, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (reduction_conv): Conv2d(96, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
              )
            )
            (tcn): Sequential(
              (0): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (1): ReLU(inplace=True)
              (2): Conv2d(32, 32, kernel_size=(9, 1), stride=(1, 1), padding=(4, 0))
              (3): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (4): Dropout(p=0.3, inplace=True)
            )
          )
          (1): ConvBlock(
            (act): ReLU(inplace=True)
            (gcn): PyGeoConv(
              (g_conv): SAGC(
                (conv_a): ModuleList(
                  (0): Conv2d(32, 8, kernel_size=(1, 1), stride=(1, 1))
                  (1): Conv2d(32, 8, kernel_size=(1, 1), stride=(1, 1))
                  (2): Conv2d(32, 8, kernel_size=(1, 1), stride=(1, 1))
                )
                (conv_b): ModuleList(
                  (0): Conv2d(32, 8, kernel_size=(1, 1), stride=(1, 1))
                  (1): Conv2d(32, 8, kernel_size=(1, 1), stride=(1, 1))
                  (2): Conv2d(32, 8, kernel_size=(1, 1), stride=(1, 1))
                )
                (gconv): ModuleList(
                  (0): GraphConvBR(
                    (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                    (act): ReLU(inplace=True)
                  )
                  (1): GraphConvBR(
                    (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                    (act): ReLU(inplace=True)
                  )
                  (2): GraphConvBR(
                    (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                    (act): ReLU(inplace=True)
                  )
                )
                (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                (soft): Softmax(dim=-2)
                (relu): CELU(alpha=0.01)
                (expanding_conv): Conv2d(32, 288, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (reduction_conv): Conv2d(96, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
              )
            )
            (tcn): Sequential(
              (0): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (1): ReLU(inplace=True)
              (2): Conv2d(32, 32, kernel_size=(9, 1), stride=(1, 1), padding=(4, 0))
              (3): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (4): Dropout(p=0.3, inplace=True)
            )
          )
          (2): ConvBlock(
            (act): ReLU(inplace=True)
            (gcn): PyGeoConv(
              (g_conv): SAGC(
                (conv_a): ModuleList(
                  (0): Conv2d(32, 8, kernel_size=(1, 1), stride=(1, 1))
                  (1): Conv2d(32, 8, kernel_size=(1, 1), stride=(1, 1))
                  (2): Conv2d(32, 8, kernel_size=(1, 1), stride=(1, 1))
                )
                (conv_b): ModuleList(
                  (0): Conv2d(32, 8, kernel_size=(1, 1), stride=(1, 1))
                  (1): Conv2d(32, 8, kernel_size=(1, 1), stride=(1, 1))
                  (2): Conv2d(32, 8, kernel_size=(1, 1), stride=(1, 1))
                )
                (gconv): ModuleList(
                  (0): GraphConvBR(
                    (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                    (act): ReLU(inplace=True)
                  )
                  (1): GraphConvBR(
                    (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                    (act): ReLU(inplace=True)
                  )
                  (2): GraphConvBR(
                    (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                    (act): ReLU(inplace=True)
                  )
                )
                (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                (soft): Softmax(dim=-2)
                (relu): CELU(alpha=0.01)
                (expanding_conv): Conv2d(32, 288, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (reduction_conv): Conv2d(96, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
              )
            )
            (tcn): Sequential(
              (0): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (1): ReLU(inplace=True)
              (2): Conv2d(32, 32, kernel_size=(9, 1), stride=(2, 1), padding=(4, 0))
              (3): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (4): Dropout(p=0.3, inplace=True)
            )
            (residual): Sequential(
              (0): Conv2d(32, 32, kernel_size=(1, 1), stride=(2, 1))
              (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            )
          )
          (3): ConvBlock(
            (act): ReLU(inplace=True)
            (gcn): PyGeoConv(
              (g_conv): SAGC(
                (conv_a): ModuleList(
                  (0): Conv2d(32, 12, kernel_size=(1, 1), stride=(1, 1))
                  (1): Conv2d(32, 12, kernel_size=(1, 1), stride=(1, 1))
                  (2): Conv2d(32, 12, kernel_size=(1, 1), stride=(1, 1))
                )
                (conv_b): ModuleList(
                  (0): Conv2d(32, 12, kernel_size=(1, 1), stride=(1, 1))
                  (1): Conv2d(32, 12, kernel_size=(1, 1), stride=(1, 1))
                  (2): Conv2d(32, 12, kernel_size=(1, 1), stride=(1, 1))
                )
                (gconv): ModuleList(
                  (0): GraphConvBR(
                    (bn): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                    (act): ReLU(inplace=True)
                  )
                  (1): GraphConvBR(
                    (bn): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                    (act): ReLU(inplace=True)
                  )
                  (2): GraphConvBR(
                    (bn): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                    (act): ReLU(inplace=True)
                  )
                )
                (down): Sequential(
                  (0): Conv2d(32, 48, kernel_size=(1, 1), stride=(1, 1))
                  (1): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                )
                (bn): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                (soft): Softmax(dim=-2)
                (relu): CELU(alpha=0.01)
                (expanding_conv): Conv2d(32, 432, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (reduction_conv): Conv2d(144, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)
              )
            )
            (tcn): Sequential(
              (0): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (1): ReLU(inplace=True)
              (2): Conv2d(48, 48, kernel_size=(9, 1), stride=(1, 1), padding=(4, 0))
              (3): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (4): Dropout(p=0.3, inplace=True)
            )
            (residual): Sequential(
              (0): Conv2d(32, 48, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            )
          )
          (4): ConvBlock(
            (act): ReLU(inplace=True)
            (gcn): PyGeoConv(
              (g_conv): SAGC(
                (conv_a): ModuleList(
                  (0): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
                  (1): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
                  (2): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
                )
                (conv_b): ModuleList(
                  (0): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
                  (1): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
                  (2): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
                )
                (gconv): ModuleList(
                  (0): GraphConvBR(
                    (bn): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                    (act): ReLU(inplace=True)
                  )
                  (1): GraphConvBR(
                    (bn): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                    (act): ReLU(inplace=True)
                  )
                  (2): GraphConvBR(
                    (bn): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                    (act): ReLU(inplace=True)
                  )
                )
                (bn): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                (soft): Softmax(dim=-2)
                (relu): CELU(alpha=0.01)
                (expanding_conv): Conv2d(48, 432, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (reduction_conv): Conv2d(144, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)
              )
            )
            (tcn): Sequential(
              (0): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (1): ReLU(inplace=True)
              (2): Conv2d(48, 48, kernel_size=(9, 1), stride=(1, 1), padding=(4, 0))
              (3): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (4): Dropout(p=0.3, inplace=True)
            )
          )
          (5): ConvBlock(
            (act): ReLU(inplace=True)
            (gcn): PyGeoConv(
              (g_conv): SAGC(
                (conv_a): ModuleList(
                  (0): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
                  (1): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
                  (2): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
                )
                (conv_b): ModuleList(
                  (0): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
                  (1): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
                  (2): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
                )
                (gconv): ModuleList(
                  (0): GraphConvBR(
                    (bn): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                    (act): ReLU(inplace=True)
                  )
                  (1): GraphConvBR(
                    (bn): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                    (act): ReLU(inplace=True)
                  )
                  (2): GraphConvBR(
                    (bn): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                    (act): ReLU(inplace=True)
                  )
                )
                (bn): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                (soft): Softmax(dim=-2)
                (relu): CELU(alpha=0.01)
                (expanding_conv): Conv2d(48, 432, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (reduction_conv): Conv2d(144, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)
              )
            )
            (tcn): Sequential(
              (0): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (1): ReLU(inplace=True)
              (2): Conv2d(48, 48, kernel_size=(9, 1), stride=(3, 1), padding=(4, 0))
              (3): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (4): Dropout(p=0.3, inplace=True)
            )
            (residual): Sequential(
              (0): Conv2d(48, 48, kernel_size=(1, 1), stride=(3, 1))
              (1): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            )
          )
          (6): ConvBlock(
            (act): ReLU(inplace=True)
            (gcn): PyGeoConv(
              (g_conv): SAGC(
                (conv_a): ModuleList(
                  (0): Conv2d(48, 16, kernel_size=(1, 1), stride=(1, 1))
                  (1): Conv2d(48, 16, kernel_size=(1, 1), stride=(1, 1))
                  (2): Conv2d(48, 16, kernel_size=(1, 1), stride=(1, 1))
                )
                (conv_b): ModuleList(
                  (0): Conv2d(48, 16, kernel_size=(1, 1), stride=(1, 1))
                  (1): Conv2d(48, 16, kernel_size=(1, 1), stride=(1, 1))
                  (2): Conv2d(48, 16, kernel_size=(1, 1), stride=(1, 1))
                )
                (gconv): ModuleList(
                  (0): GraphConvBR(
                    (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                    (act): ReLU(inplace=True)
                  )
                  (1): GraphConvBR(
                    (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                    (act): ReLU(inplace=True)
                  )
                  (2): GraphConvBR(
                    (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                    (act): ReLU(inplace=True)
                  )
                )
                (down): Sequential(
                  (0): Conv2d(48, 64, kernel_size=(1, 1), stride=(1, 1))
                  (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                )
                (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                (soft): Softmax(dim=-2)
                (relu): CELU(alpha=0.01)
                (expanding_conv): Conv2d(48, 576, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (reduction_conv): Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
              )
            )
            (tcn): Sequential(
              (0): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (1): ReLU(inplace=True)
              (2): Conv2d(64, 64, kernel_size=(9, 1), stride=(1, 1), padding=(4, 0))
              (3): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (4): Dropout(p=0.3, inplace=True)
            )
            (residual): Sequential(
              (0): Conv2d(48, 64, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            )
          )
          (7): ConvBlock(
            (act): ReLU(inplace=True)
            (gcn): PyGeoConv(
              (g_conv): SAGC(
                (conv_a): ModuleList(
                  (0): Conv2d(64, 16, kernel_size=(1, 1), stride=(1, 1))
                  (1): Conv2d(64, 16, kernel_size=(1, 1), stride=(1, 1))
                  (2): Conv2d(64, 16, kernel_size=(1, 1), stride=(1, 1))
                )
                (conv_b): ModuleList(
                  (0): Conv2d(64, 16, kernel_size=(1, 1), stride=(1, 1))
                  (1): Conv2d(64, 16, kernel_size=(1, 1), stride=(1, 1))
                  (2): Conv2d(64, 16, kernel_size=(1, 1), stride=(1, 1))
                )
                (gconv): ModuleList(
                  (0): GraphConvBR(
                    (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                    (act): ReLU(inplace=True)
                  )
                  (1): GraphConvBR(
                    (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                    (act): ReLU(inplace=True)
                  )
                  (2): GraphConvBR(
                    (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                    (act): ReLU(inplace=True)
                  )
                )
                (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                (soft): Softmax(dim=-2)
                (relu): CELU(alpha=0.01)
                (expanding_conv): Conv2d(64, 576, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (reduction_conv): Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
              )
            )
            (tcn): Sequential(
              (0): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (1): ReLU(inplace=True)
              (2): Conv2d(64, 64, kernel_size=(9, 1), stride=(1, 1), padding=(4, 0))
              (3): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (4): Dropout(p=0.3, inplace=True)
            )
          )
          (8): ConvBlock(
            (act): ReLU(inplace=True)
            (gcn): PyGeoConv(
              (g_conv): SAGC(
                (conv_a): ModuleList(
                  (0): Conv2d(64, 8, kernel_size=(1, 1), stride=(1, 1))
                  (1): Conv2d(64, 8, kernel_size=(1, 1), stride=(1, 1))
                  (2): Conv2d(64, 8, kernel_size=(1, 1), stride=(1, 1))
                )
                (conv_b): ModuleList(
                  (0): Conv2d(64, 8, kernel_size=(1, 1), stride=(1, 1))
                  (1): Conv2d(64, 8, kernel_size=(1, 1), stride=(1, 1))
                  (2): Conv2d(64, 8, kernel_size=(1, 1), stride=(1, 1))
                )
                (gconv): ModuleList(
                  (0): GraphConvBR(
                    (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                    (act): ReLU(inplace=True)
                  )
                  (1): GraphConvBR(
                    (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                    (act): ReLU(inplace=True)
                  )
                  (2): GraphConvBR(
                    (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                    (act): ReLU(inplace=True)
                  )
                )
                (down): Sequential(
                  (0): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1))
                  (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                )
                (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                (soft): Softmax(dim=-2)
                (relu): CELU(alpha=0.01)
                (expanding_conv): Conv2d(64, 288, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (reduction_conv): Conv2d(96, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
              )
            )
            (tcn): Sequential(
              (0): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (1): ReLU(inplace=True)
              (2): Conv2d(32, 32, kernel_size=(9, 1), stride=(1, 1), padding=(4, 0))
              (3): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (4): Dropout(p=0.3, inplace=True)
            )
            (residual): Sequential(
              (0): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            )
          )
        )
        (dec_final_gcn): ConvBlock(
          (act): ReLU(inplace=True)
          (gcn): PyGeoConv(
            (g_conv): ConvTemporalGraphical(
              (conv): Conv2d(48, 9, kernel_size=(1, 1), stride=(1, 1))
            )
          )
          (tcn): Sequential(
            (0): BatchNorm2d(3, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (1): ReLU(inplace=True)
            (2): Conv2d(3, 3, kernel_size=(9, 1), stride=(1, 1), padding=(4, 0))
            (3): Identity()
            (4): Dropout(p=0.3, inplace=True)
          )
        )
        (st_gcn_dec): ModuleList(
          (0): Upsample(scale_factor=(3.0, 1.0), mode=bilinear)
          (1): ConvBlock(
            (act): ReLU(inplace=True)
            (gcn): PyGeoConv(
              (g_conv): SAGC(
                (conv_a): ModuleList(
                  (0): Conv2d(32, 16, kernel_size=(1, 1), stride=(1, 1))
                  (1): Conv2d(32, 16, kernel_size=(1, 1), stride=(1, 1))
                  (2): Conv2d(32, 16, kernel_size=(1, 1), stride=(1, 1))
                )
                (conv_b): ModuleList(
                  (0): Conv2d(32, 16, kernel_size=(1, 1), stride=(1, 1))
                  (1): Conv2d(32, 16, kernel_size=(1, 1), stride=(1, 1))
                  (2): Conv2d(32, 16, kernel_size=(1, 1), stride=(1, 1))
                )
                (gconv): ModuleList(
                  (0): GraphConvBR(
                    (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                    (act): ReLU(inplace=True)
                  )
                  (1): GraphConvBR(
                    (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                    (act): ReLU(inplace=True)
                  )
                  (2): GraphConvBR(
                    (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                    (act): ReLU(inplace=True)
                  )
                )
                (down): Sequential(
                  (0): Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1))
                  (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                )
                (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                (soft): Softmax(dim=-2)
                (relu): CELU(alpha=0.01)
                (expanding_conv): Conv2d(32, 576, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (reduction_conv): Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
              )
            )
            (tcn): Sequential(
              (0): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (1): ReLU(inplace=True)
              (2): Conv2d(64, 64, kernel_size=(9, 1), stride=(1, 1), padding=(4, 0))
              (3): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (4): Dropout(p=0, inplace=True)
            )
            (residual): Sequential(
              (0): Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            )
          )
          (2): ConvBlock(
            (act): ReLU(inplace=True)
            (gcn): PyGeoConv(
              (g_conv): SAGC(
                (conv_a): ModuleList(
                  (0): Conv2d(64, 16, kernel_size=(1, 1), stride=(1, 1))
                  (1): Conv2d(64, 16, kernel_size=(1, 1), stride=(1, 1))
                  (2): Conv2d(64, 16, kernel_size=(1, 1), stride=(1, 1))
                )
                (conv_b): ModuleList(
                  (0): Conv2d(64, 16, kernel_size=(1, 1), stride=(1, 1))
                  (1): Conv2d(64, 16, kernel_size=(1, 1), stride=(1, 1))
                  (2): Conv2d(64, 16, kernel_size=(1, 1), stride=(1, 1))
                )
                (gconv): ModuleList(
                  (0): GraphConvBR(
                    (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                    (act): ReLU(inplace=True)
                  )
                  (1): GraphConvBR(
                    (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                    (act): ReLU(inplace=True)
                  )
                  (2): GraphConvBR(
                    (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                    (act): ReLU(inplace=True)
                  )
                )
                (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                (soft): Softmax(dim=-2)
                (relu): CELU(alpha=0.01)
                (expanding_conv): Conv2d(64, 576, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (reduction_conv): Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
              )
            )
            (tcn): Sequential(
              (0): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (1): ReLU(inplace=True)
              (2): Conv2d(64, 64, kernel_size=(9, 1), stride=(1, 1), padding=(4, 0))
              (3): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (4): Dropout(p=0, inplace=True)
            )
          )
          (3): ConvBlock(
            (act): ReLU(inplace=True)
            (gcn): PyGeoConv(
              (g_conv): SAGC(
                (conv_a): ModuleList(
                  (0): Conv2d(64, 12, kernel_size=(1, 1), stride=(1, 1))
                  (1): Conv2d(64, 12, kernel_size=(1, 1), stride=(1, 1))
                  (2): Conv2d(64, 12, kernel_size=(1, 1), stride=(1, 1))
                )
                (conv_b): ModuleList(
                  (0): Conv2d(64, 12, kernel_size=(1, 1), stride=(1, 1))
                  (1): Conv2d(64, 12, kernel_size=(1, 1), stride=(1, 1))
                  (2): Conv2d(64, 12, kernel_size=(1, 1), stride=(1, 1))
                )
                (gconv): ModuleList(
                  (0): GraphConvBR(
                    (bn): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                    (act): ReLU(inplace=True)
                  )
                  (1): GraphConvBR(
                    (bn): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                    (act): ReLU(inplace=True)
                  )
                  (2): GraphConvBR(
                    (bn): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                    (act): ReLU(inplace=True)
                  )
                )
                (down): Sequential(
                  (0): Conv2d(64, 48, kernel_size=(1, 1), stride=(1, 1))
                  (1): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                )
                (bn): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                (soft): Softmax(dim=-2)
                (relu): CELU(alpha=0.01)
                (expanding_conv): Conv2d(64, 432, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (reduction_conv): Conv2d(144, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)
              )
            )
            (tcn): Sequential(
              (0): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (1): ReLU(inplace=True)
              (2): Conv2d(48, 48, kernel_size=(9, 1), stride=(1, 1), padding=(4, 0))
              (3): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (4): Dropout(p=0, inplace=True)
            )
            (residual): Sequential(
              (0): Conv2d(64, 48, kernel_size=(1, 1), stride=(1, 1))
              (1): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            )
          )
          (4): Upsample(scale_factor=(2.0, 1.0), mode=bilinear)
          (5): ConvBlock(
            (act): ReLU(inplace=True)
            (gcn): PyGeoConv(
              (g_conv): SAGC(
                (conv_a): ModuleList(
                  (0): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
                  (1): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
                  (2): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
                )
                (conv_b): ModuleList(
                  (0): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
                  (1): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
                  (2): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
                )
                (gconv): ModuleList(
                  (0): GraphConvBR(
                    (bn): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                    (act): ReLU(inplace=True)
                  )
                  (1): GraphConvBR(
                    (bn): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                    (act): ReLU(inplace=True)
                  )
                  (2): GraphConvBR(
                    (bn): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                    (act): ReLU(inplace=True)
                  )
                )
                (bn): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                (soft): Softmax(dim=-2)
                (relu): CELU(alpha=0.01)
                (expanding_conv): Conv2d(48, 432, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (reduction_conv): Conv2d(144, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)
              )
            )
            (tcn): Sequential(
              (0): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (1): ReLU(inplace=True)
              (2): Conv2d(48, 48, kernel_size=(9, 1), stride=(1, 1), padding=(4, 0))
              (3): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (4): Dropout(p=0, inplace=True)
            )
          )
          (6): ConvBlock(
            (act): ReLU(inplace=True)
            (gcn): PyGeoConv(
              (g_conv): SAGC(
                (conv_a): ModuleList(
                  (0): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
                  (1): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
                  (2): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
                )
                (conv_b): ModuleList(
                  (0): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
                  (1): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
                  (2): Conv2d(48, 12, kernel_size=(1, 1), stride=(1, 1))
                )
                (gconv): ModuleList(
                  (0): GraphConvBR(
                    (bn): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                    (act): ReLU(inplace=True)
                  )
                  (1): GraphConvBR(
                    (bn): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                    (act): ReLU(inplace=True)
                  )
                  (2): GraphConvBR(
                    (bn): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                    (act): ReLU(inplace=True)
                  )
                )
                (bn): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                (soft): Softmax(dim=-2)
                (relu): CELU(alpha=0.01)
                (expanding_conv): Conv2d(48, 432, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (reduction_conv): Conv2d(144, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)
              )
            )
            (tcn): Sequential(
              (0): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (1): ReLU(inplace=True)
              (2): Conv2d(48, 48, kernel_size=(9, 1), stride=(1, 1), padding=(4, 0))
              (3): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (4): Dropout(p=0, inplace=True)
            )
          )
        )
      )
    )
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177
    • 178
    • 179
    • 180
    • 181
    • 182
    • 183
    • 184
    • 185
    • 186
    • 187
    • 188
    • 189
    • 190
    • 191
    • 192
    • 193
    • 194
    • 195
    • 196
    • 197
    • 198
    • 199
    • 200
    • 201
    • 202
    • 203
    • 204
    • 205
    • 206
    • 207
    • 208
    • 209
    • 210
    • 211
    • 212
    • 213
    • 214
    • 215
    • 216
    • 217
    • 218
    • 219
    • 220
    • 221
    • 222
    • 223
    • 224
    • 225
    • 226
    • 227
    • 228
    • 229
    • 230
    • 231
    • 232
    • 233
    • 234
    • 235
    • 236
    • 237
    • 238
    • 239
    • 240
    • 241
    • 242
    • 243
    • 244
    • 245
    • 246
    • 247
    • 248
    • 249
    • 250
    • 251
    • 252
    • 253
    • 254
    • 255
    • 256
    • 257
    • 258
    • 259
    • 260
    • 261
    • 262
    • 263
    • 264
    • 265
    • 266
    • 267
    • 268
    • 269
    • 270
    • 271
    • 272
    • 273
    • 274
    • 275
    • 276
    • 277
    • 278
    • 279
    • 280
    • 281
    • 282
    • 283
    • 284
    • 285
    • 286
    • 287
    • 288
    • 289
    • 290
    • 291
    • 292
    • 293
    • 294
    • 295
    • 296
    • 297
    • 298
    • 299
    • 300
    • 301
    • 302
    • 303
    • 304
    • 305
    • 306
    • 307
    • 308
    • 309
    • 310
    • 311
    • 312
    • 313
    • 314
    • 315
    • 316
    • 317
    • 318
    • 319
    • 320
    • 321
    • 322
    • 323
    • 324
    • 325
    • 326
    • 327
    • 328
    • 329
    • 330
    • 331
    • 332
    • 333
    • 334
    • 335
    • 336
    • 337
    • 338
    • 339
    • 340
    • 341
    • 342
    • 343
    • 344
    • 345
    • 346
    • 347
    • 348
    • 349
    • 350
    • 351
    • 352
    • 353
    • 354
    • 355
    • 356
    • 357
    • 358
    • 359
    • 360
    • 361
    • 362
    • 363
    • 364
    • 365
    • 366
    • 367
    • 368
    • 369
    • 370
    • 371
    • 372
    • 373
    • 374
    • 375
    • 376
    • 377
    • 378
    • 379
    • 380
    • 381
    • 382
    • 383
    • 384
    • 385
    • 386
    • 387
    • 388
    • 389
    • 390
    • 391
    • 392
    • 393
    • 394
    • 395
    • 396
    • 397
    • 398
    • 399
    • 400
    • 401
    • 402
    • 403
    • 404
    • 405
    • 406
    • 407
    • 408
    • 409
    • 410
    • 411
    • 412
    • 413
    • 414
    • 415
    • 416
    • 417
    • 418
    • 419
    • 420
    • 421
    • 422
    • 423
    • 424
    • 425
    • 426
    • 427
    • 428
    • 429
    • 430
    • 431
    • 432
    • 433
    • 434
    • 435
    • 436
    • 437
    • 438
    • 439
    • 440
    • 441
    • 442
    • 443
    • 444
    • 445
    • 446
    • 447
    • 448
    • 449
    • 450
    • 451
    • 452
    • 453
    • 454
    • 455
    • 456
    • 457
    • 458
    • 459
    • 460
    • 461
    • 462
    • 463
    • 464
    • 465
    • 466
    • 467
    • 468
    • 469
    • 470
    • 471
    • 472
    • 473
    • 474
    • 475
    • 476
    • 477
    • 478
    • 479
    • 480
    • 481
    • 482
    • 483
    • 484
    • 485
    • 486
    • 487
    • 488
    • 489
    • 490
    • 491
    • 492
    • 493
    • 494
    • 495
    • 496
    • 497
    • 498
    • 499
    • 500
    • 501
    • 502
    • 503
    • 504
    • 505
    • 506
    • 507
    • 508
    • 509
    • 510
    • 511
    • 512
    • 513
    • 514
    • 515
    • 516
    • 517
    • 518
    • 519
    • 520
    • 521
    • 522
    • 523
    • 524
    • 525
    • 526
    • 527
    • 528
    • 529
    • 530
    • 531
    • 532
    • 533
    • 534
    • 535
    • 536
    • 537
    • 538
    • 539
    • 540
    • 541
    • 542
    • 543
    • 544
    • 545
    • 546
    • 547
    • 548
    • 549
    • 550
    • 551
    • 552
    • 553
    • 554
    • 555
    • 556
    • 557
    • 558
    • 559
    • 560
    • 561
    • 562
    • 563
    • 564
    • 565
    • 566
    • 567
    • 568
    • 569
    • 570
    • 571
    • 572
    • 573
    • 574
    • 575
    • 576
    • 577
    • 578
    • 579
    • 580
    • 581
    • 582
    • 583
    • 584
    • 585
    • 586
    • 587
    • 588
    • 589
    • 590
    • 591
    • 592
    • 593
    • 594
    • 595
    • 596
    • 597
    • 598
    • 599
    • 600
    • 601
    • 602
    • 603
    • 604
    • 605
    • 606
    • 607
    • 608
    • 609
    • 610
    • 611
    • 612
    • 613
    • 614
    • 615
    • 616
    • 617
    • 618
    • 619
    • 620
    • 621
    • 622
    • 623
    • 624
    • 625
    • 626
    • 627
    • 628
    • 629
    • 630
    • 631
    • 632
    • 633
    • 634
    • 635
    • 636
    • 637
    • 638
    • 639
    • 640
    • 641
    • 642
    • 643
    • 644
    • 645
    • 646
    • 647
    • 648
    • 649
    • 650
    • 651
    • 652
    • 653
    • 654
    • 655
    • 656
    • 657
    • 658
    • 659
    • 660
    • 661
    • 662
    • 663
    • 664
    • 665
    • 666
    • 667
    • 668
    • 669
    • 670
    • 671
    • 672
    • 673
    • 674
    • 675
    • 676
    • 677
    • 678
    • 679
    • 680
    • 681
    • 682
  • 相关阅读:
    联邦学习中的差分隐私与同态加密
    神经网络物联网的未来趋势与发展
    Qt之显示PDF文件
    UM2080F32——32位SoC芯片
    centos7安装confluence7.16.5
    基础DML(数据更新)知识点总结及实例讲解
    【MATLAB教程案例6】基于Costas环的载波同步matlab仿真
    HIve数仓新零售项目DWB层的构建
    7.cuBLAS开发指南中文版--cuBLAS中的cublasSetVector()和cublasGetVector()
    阿里、美团、拼多多、网易大厂面试之Redis+多线程+JVM+微服务...
  • 原文地址:https://blog.csdn.net/ResumeProject/article/details/126678496