• 《30天吃掉那只 TensorFlow2.0》 3-3 高阶API示范


    3-3 高阶API示范


    在这里插入图片描述

    下面的范例使用TensorFlow的高阶API实现线性回归模型和DNN二分类模型。

    TensorFlow的高阶API主要为tf.keras.models提供的模型的类接口

    使用Keras接口有以下3种方式构建模型:使用Sequential按层顺序构建模型,使用函数式API构建任意结构模型,继承Model基类构建自定义模型。

    此处分别演示使用Sequential按层顺序构建模型以及继承Model基类构建自定义模型。

    这里还是一开始定义一个打印时间分割线的函数

    import tensorflow as tf
    
    #打印时间分割线
    @tf.function
    def printbar():
        today_ts = tf.timestamp()%(24*60*60)
    
        hour = tf.cast(today_ts//3600+8,tf.int32)%tf.constant(24)
        minite = tf.cast((today_ts%3600)//60,tf.int32)
        second = tf.cast(tf.floor(today_ts%60),tf.int32)
        
        def timeformat(m):
            if tf.strings.length(tf.strings.format("{}",m))==1:
                return(tf.strings.format("0{}",m))
            else:
                return(tf.strings.format("{}",m))
        
        timestring = tf.strings.join([timeformat(hour),timeformat(minite),
                    timeformat(second)],separator = ":")
        tf.print("=========="*8+timestring)
    
        
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22

    一,线性回归模型

    此范例我们使用Sequential按层顺序构建模型,并使用内置model.fit方法训练模型【面向新手】。

    1,准备数据

    首先我们得先准备数据,我们可以用tensorflow来生成随机数,由于我们是线性回归,我们就可以利用矩阵乘法生成,并且加入一些正态扰动即可

    import numpy as np 
    import pandas as pd
    from matplotlib import pyplot as plt 
    import tensorflow as tf
    from tensorflow.keras import models,layers,losses,metrics,optimizers
    
    #样本数量
    n = 400
    
    # 生成测试用数据集
    X = tf.random.uniform([n,2],minval=-10,maxval=10) 
    w0 = tf.constant([[2.0],[-3.0]])
    b0 = tf.constant([[3.0]])
    Y = X@w0 + b0 + tf.random.normal([n,1],mean = 0.0,stddev= 2.0)  # @表示矩阵乘法,增加正态扰动
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    # 数据可视化
    
    %matplotlib inline
    %config InlineBackend.figure_format = 'svg'
    plt.figure(figsize = (12,5))
    ax1 = plt.subplot(121)
    ax1.scatter(X[:,0],Y[:,0], c = "b")
    plt.xlabel("x1")
    plt.ylabel("y",rotation = 0)
    
    ax2 = plt.subplot(122)
    ax2.scatter(X[:,1],Y[:,0], c = "g")
    plt.xlabel("x2")
    plt.ylabel("y",rotation = 0)
    plt.show()
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16

    在这里插入图片描述

    2,定义模型

    这里的定义模型,我们可以用tf.keras的高阶API,简单就可以定义完成,只需要通过add

    tf.keras.backend.clear_session()
    
    model = models.Sequential()
    model.add(layers.Dense(1,input_shape =(2,)))
    model.summary()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    Model: "sequential"
    _________________________________________________________________
    Layer (type)                 Output Shape              Param #   
    =================================================================
    dense (Dense)                (None, 1)                 3         
    =================================================================
    Total params: 3
    Trainable params: 3
    Non-trainable params: 0
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    3,训练模型

    这里可以直接用fit方法训练,不需要写过多的东西

    ### 使用fit方法进行训练
    
    model.compile(optimizer="adam",loss="mse",metrics=["mae"])
    model.fit(X,Y,batch_size = 10,epochs = 200)  
    
    tf.print("w = ",model.layers[0].kernel)
    tf.print("b = ",model.layers[0].bias)
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    Epoch 197/200
    400/400 [==============================] - 0s 190us/sample - loss: 4.3977 - mae: 1.7129
    Epoch 198/200
    400/400 [==============================] - 0s 172us/sample - loss: 4.3918 - mae: 1.7117
    Epoch 199/200
    400/400 [==============================] - 0s 134us/sample - loss: 4.3861 - mae: 1.7106
    Epoch 200/200
    400/400 [==============================] - 0s 166us/sample - loss: 4.3786 - mae: 1.7092
    w =  [[1.99339032]
     [-3.00866461]]
    b =  [2.67018795]
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    # 结果可视化
    
    %matplotlib inline
    %config InlineBackend.figure_format = 'svg'
    
    w,b = model.variables
    
    plt.figure(figsize = (12,5))
    ax1 = plt.subplot(121)
    ax1.scatter(X[:,0],Y[:,0], c = "b",label = "samples")
    ax1.plot(X[:,0],w[0]*X[:,0]+b[0],"-r",linewidth = 5.0,label = "model")
    ax1.legend()
    plt.xlabel("x1")
    plt.ylabel("y",rotation = 0)
    
    ax2 = plt.subplot(122)
    ax2.scatter(X[:,1],Y[:,0], c = "g",label = "samples")
    ax2.plot(X[:,1],w[1]*X[:,1]+b[0],"-r",linewidth = 5.0,label = "model")
    ax2.legend()
    plt.xlabel("x2")
    plt.ylabel("y",rotation = 0)
    
    plt.show()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23

    在这里插入图片描述

    二,DNN二分类模型

    此范例我们使用继承Model基类构建自定义模型,并构建自定义训练循环【面向专家】

    1,准备数据

    这里和前面有些类似,首先我们利用tensorflow的random函数来得到我们的数据

    • 生成正样本, 小圆环分布

    • 生成负样本, 大圆环分布

      生成后也可以可视化,对数据的分布有一个更好的理解

    import numpy as np 
    import pandas as pd 
    from matplotlib import pyplot as plt
    import tensorflow as tf
    from tensorflow.keras import layers,losses,metrics,optimizers
    %matplotlib inline
    %config InlineBackend.figure_format = 'svg'
    
    #正负样本数量
    n_positive,n_negative = 2000,2000
    
    #生成正样本, 小圆环分布
    r_p = 5.0 + tf.random.truncated_normal([n_positive,1],0.0,1.0)
    theta_p = tf.random.uniform([n_positive,1],0.0,2*np.pi) 
    Xp = tf.concat([r_p*tf.cos(theta_p),r_p*tf.sin(theta_p)],axis = 1)
    Yp = tf.ones_like(r_p)
    
    #生成负样本, 大圆环分布
    r_n = 8.0 + tf.random.truncated_normal([n_negative,1],0.0,1.0)
    theta_n = tf.random.uniform([n_negative,1],0.0,2*np.pi) 
    Xn = tf.concat([r_n*tf.cos(theta_n),r_n*tf.sin(theta_n)],axis = 1)
    Yn = tf.zeros_like(r_n)
    
    #汇总样本
    X = tf.concat([Xp,Xn],axis = 0)
    Y = tf.concat([Yp,Yn],axis = 0)
    
    #样本洗牌
    data = tf.concat([X,Y],axis = 1)
    data = tf.random.shuffle(data)
    X = data[:,:2]
    Y = data[:,2:]
    
    
    #可视化
    plt.figure(figsize = (6,6))
    plt.scatter(Xp[:,0].numpy(),Xp[:,1].numpy(),c = "r")
    plt.scatter(Xn[:,0].numpy(),Xn[:,1].numpy(),c = "g")
    plt.legend(["positive","negative"]);
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40

    在这里插入图片描述

    这里还是构建数据管道

    ds_train = tf.data.Dataset.from_tensor_slices((X[0:n*3//4,:],Y[0:n*3//4,:])) \
         .shuffle(buffer_size = 1000).batch(20) \
         .prefetch(tf.data.experimental.AUTOTUNE) \
         .cache()
    
    ds_valid = tf.data.Dataset.from_tensor_slices((X[n*3//4:,:],Y[n*3//4:,:])) \
         .batch(20) \
         .prefetch(tf.data.experimental.AUTOTUNE) \
         .cache()
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    2,定义模型

    这里的定义模型是和中阶API的一样的,定义正向传播和模型的结构

    tf.keras.backend.clear_session()
    class DNNModel(models.Model):
        def __init__(self):
            super(DNNModel, self).__init__()
            
        def build(self,input_shape):
            self.dense1 = layers.Dense(4,activation = "relu",name = "dense1") 
            self.dense2 = layers.Dense(8,activation = "relu",name = "dense2")
            self.dense3 = layers.Dense(1,activation = "sigmoid",name = "dense3")
            super(DNNModel,self).build(input_shape)
     
        # 正向传播
        @tf.function(input_signature=[tf.TensorSpec(shape = [None,2], dtype = tf.float32)])  
        def call(self,x):
            x = self.dense1(x)
            x = self.dense2(x)
            y = self.dense3(x)
            return y
    
    model = DNNModel()
    model.build(input_shape =(None,2))
    
    model.summary()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    Model: "dnn_model"
    _________________________________________________________________
    Layer (type)                 Output Shape              Param #   
    =================================================================
    dense1 (Dense)               multiple                  12        
    _________________________________________________________________
    dense2 (Dense)               multiple                  40        
    _________________________________________________________________
    dense3 (Dense)               multiple                  9         
    =================================================================
    Total params: 61
    Trainable params: 61
    Non-trainable params: 0
    _________________________________________________________________
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    3,训练模型
    ### 自定义训练循环
    
    optimizer = optimizers.Adam(learning_rate=0.01)
    loss_func = tf.keras.losses.BinaryCrossentropy()
    
    train_loss = tf.keras.metrics.Mean(name='train_loss')
    train_metric = tf.keras.metrics.BinaryAccuracy(name='train_accuracy')
    
    valid_loss = tf.keras.metrics.Mean(name='valid_loss')
    valid_metric = tf.keras.metrics.BinaryAccuracy(name='valid_accuracy')
    
    
    @tf.function
    def train_step(model, features, labels):
        with tf.GradientTape() as tape:
            predictions = model(features)
            loss = loss_func(labels, predictions)
        grads = tape.gradient(loss, model.trainable_variables)
        optimizer.apply_gradients(zip(grads, model.trainable_variables))
    
        train_loss.update_state(loss)
        train_metric.update_state(labels, predictions)
    
    @tf.function
    def valid_step(model, features, labels):
        predictions = model(features)
        batch_loss = loss_func(labels, predictions)
        valid_loss.update_state(batch_loss)
        valid_metric.update_state(labels, predictions)
        
    
    def train_model(model,ds_train,ds_valid,epochs):
        for epoch in tf.range(1,epochs+1):
            for features, labels in ds_train:
                train_step(model,features,labels)
    
            for features, labels in ds_valid:
                valid_step(model,features,labels)
    
            logs = 'Epoch={},Loss:{},Accuracy:{},Valid Loss:{},Valid Accuracy:{}'
            
            if  epoch%100 ==0:
                printbar()
                tf.print(tf.strings.format(logs,
                (epoch,train_loss.result(),train_metric.result(),valid_loss.result(),valid_metric.result())))
            
            train_loss.reset_states()
            valid_loss.reset_states()
            train_metric.reset_states()
            valid_metric.reset_states()
    
    train_model(model,ds_train,ds_valid,1000)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    ================================================================================17:35:02
    Epoch=100,Loss:0.194088802,Accuracy:0.923064,Valid Loss:0.215538561,Valid Accuracy:0.904368
    ================================================================================17:35:22
    Epoch=200,Loss:0.151239693,Accuracy:0.93768847,Valid Loss:0.181166962,Valid Accuracy:0.920664132
    ================================================================================17:35:43
    Epoch=300,Loss:0.134556711,Accuracy:0.944247484,Valid Loss:0.171530813,Valid Accuracy:0.926396072
    ================================================================================17:36:04
    Epoch=400,Loss:0.125722557,Accuracy:0.949172914,Valid Loss:0.16731061,Valid Accuracy:0.929318547
    ================================================================================17:36:24
    Epoch=500,Loss:0.120216407,Accuracy:0.952525079,Valid Loss:0.164817035,Valid Accuracy:0.931044817
    ================================================================================17:36:44
    Epoch=600,Loss:0.116434008,Accuracy:0.954830289,Valid Loss:0.163089141,Valid Accuracy:0.932202339
    ================================================================================17:37:05
    Epoch=700,Loss:0.113658346,Accuracy:0.956433,Valid Loss:0.161804497,Valid Accuracy:0.933092058
    ================================================================================17:37:25
    Epoch=800,Loss:0.111522928,Accuracy:0.957467675,Valid Loss:0.160796657,Valid Accuracy:0.93379426
    ================================================================================17:37:46
    Epoch=900,Loss:0.109816991,Accuracy:0.958205402,Valid Loss:0.159987748,Valid Accuracy:0.934343576
    ================================================================================17:38:06
    Epoch=1000,Loss:0.10841465,Accuracy:0.958805501,Valid Loss:0.159325734,Valid Accuracy:0.934785843
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    # 结果可视化
    fig, (ax1,ax2) = plt.subplots(nrows=1,ncols=2,figsize = (12,5))
    ax1.scatter(Xp[:,0].numpy(),Xp[:,1].numpy(),c = "r")
    ax1.scatter(Xn[:,0].numpy(),Xn[:,1].numpy(),c = "g")
    ax1.legend(["positive","negative"]);
    ax1.set_title("y_true");
    
    Xp_pred = tf.boolean_mask(X,tf.squeeze(model(X)>=0.5),axis = 0)
    Xn_pred = tf.boolean_mask(X,tf.squeeze(model(X)<0.5),axis = 0)
    
    ax2.scatter(Xp_pred[:,0].numpy(),Xp_pred[:,1].numpy(),c = "r")
    ax2.scatter(Xn_pred[:,0].numpy(),Xn_pred[:,1].numpy(),c = "g")
    ax2.legend(["positive","negative"]);
    ax2.set_title("y_pred");
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14

    在这里插入图片描述

  • 相关阅读:
    springboot基于java的校园二手书籍交易平台毕业设计源码131558
    【《高性能 MySQL》笔记】性能优化
    微服务项目:尚融宝(43)(核心业务流程:借款额度审批(3))
    文举论金:黄金原油全面走势分析策略指导。
    Redis之淘汰策略
    1.安装 docker 容器并配置镜像加速器
    1. Pthreads专栏简介
    过滤器Filter
    数据库系统原理与应用教程(058)—— MySQL 练习题(二):单选题
    SpringBoot_05_自动配置管理
  • 原文地址:https://blog.csdn.net/weixin_45508265/article/details/126582485