• tf_course4


    第四讲 功能扩展

    本讲目标;神经网络八股功能扩展

    具体分为:
    (1) 自制数据集,解决本领域应用

    (2) 数据增强,扩充数据集

    (3) 断点续训,存取模型

    (4)参数提取,把参数存入文本

    (5)acc/loss可视化,查看训练效果

    (6) 应用程序,给图识物

    一、回顾:

    1、tf.keras搭建神经网络八股–六步法

    (1) import – 导入所需的各种库和包

    (2) x_train, y_train – 导入数据集、自制数据集、数据增强

    (3) model = tf.keras.models.sequential()

    /class MyModel(Model) model = MyModel–定义模型

    (4) model.compile–配置模型

    (5) model.fit – 训练模型、断点续训

    (6) model.summary – 参数提取、acc/loss可视化,前向推理实现应用

    2、 代码 mnist_train_baseline.py:

    import tensorflow as tf
    
    mnist = tf.keras.datasets.mnist
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_train, x_test = x_train / 255.0, x_test / 255.0
    
    model = tf.keras.models.Sequential([
        tf.keras.layers.Flatten(),
        tf.keras.layers.Dense(128, activation='relu'),
        tf.keras.layers.Dense(10, activation='softmax')
    ])
    
    model.compile(optimizer='adam',
                  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
                  metrics=['sparse_categorical_accuracy'])
    
    model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1)
    model.summary()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    Epoch 1/5
    1875/1875 [==============================] - 2s 800us/step - loss: 0.2627 - sparse_categorical_accuracy: 0.9256 - val_loss: 0.1473 - val_sparse_categorical_accuracy: 0.9564
    Epoch 2/5
    1875/1875 [==============================] - 1s 722us/step - loss: 0.1136 - sparse_categorical_accuracy: 0.9661 - val_loss: 0.0986 - val_sparse_categorical_accuracy: 0.9708
    Epoch 3/5
    1875/1875 [==============================] - 1s 720us/step - loss: 0.0782 - sparse_categorical_accuracy: 0.9768 - val_loss: 0.0876 - val_sparse_categorical_accuracy: 0.9740
    Epoch 4/5
    1875/1875 [==============================] - 1s 718us/step - loss: 0.0593 - sparse_categorical_accuracy: 0.9812 - val_loss: 0.0802 - val_sparse_categorical_accuracy: 0.9755
    Epoch 5/5
    1875/1875 [==============================] - 1s 722us/step - loss: 0.0441 - sparse_categorical_accuracy: 0.9862 - val_loss: 0.0892 - val_sparse_categorical_accuracy: 0.9743
    Model: "sequential"
    _________________________________________________________________
     Layer (type)                Output Shape              Param #   
    =================================================================
     flatten (Flatten)           (None, 784)               0         
                                                                     
     dense (Dense)               (None, 128)               100480    
                                                                     
     dense_1 (Dense)             (None, 10)                1290      
                                                                     
    =================================================================
    Total params: 101,770
    Trainable params: 101,770
    Non-trainable params: 0
    _________________________________________________________________
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25

    二、 本讲用 tf.keras 完善功能模块

    1、 自制数据集,应对特定应用

    1.1、 观察数据集数据结构,配成特征标签对

    mnist_image_label 文件夹:
    在这里插入图片描述

    四个文件分别对应为训练集图片、训练集标签、测试集图片、测试集标签
    图片文件夹:
    在这里插入图片描述

    标签文件:

    在这里插入图片描述

    import tensorflow as tf
    from PIL import Image
    import numpy as np
    import os
    
    path = 'E:\BaiduNetdiskDownload\中国大学MOOCTF笔记2.1共享给所有学习者\class4\MNIST_FC\mnist_image_label\\'
    train_path = path + 'mnist_train_jpg_60000/'
    train_txt = path + 'mnist_train_jpg_60000.txt'
    x_train_savepath = path + 'mnist_x_train.npy'
    y_train_savepath = path + 'mnist_y_train.npy'
    
    test_path = path + 'mnist_test_jpg_10000/'
    test_txt = path + 'mnist_test_jpg_10000.txt'
    x_test_savepath = path + 'mnist_x_test.npy' 
    y_test_savepath = path + 'mnist_y_test.npy'
    
    # def generateds(图片路径, 标签文件)
    def generateds(path, txt):
        f = open(txt, 'r') 
        contents = f.readlines()
        f.close()
        x,y_ = [], []
        for content in contents:
            value = content.split()    # 以空格分开,图片路径为value[0] , 标签为value[1] , 存入列表
            img_path = path + value[0] # 拼出图片路径和文件名
            img = Image.open(img_path) # 读入图片
            img = np.array(img.convert('L')) # 图片变为8位宽灰度值的np.array格式
            img = img / 255.0 # 数据归一化 (实现预处理)
            x.append(img)  # 归一化后的数据,贴到列表x
            y_append(value[1]) # 标签贴到列表y_
            print('loading:' + content) #打印状态提示
            
        x = np.array(x) #变成np.array格式
        y_ = np.array(y_) #变成np.array格式
        y_ = y_.astype(np.int64) #变为64整形
        return x, y_  # 返回输入特征x,返回标签y_
            
        
        
    if os.path.exists(x_train_savepath) and os.path.exists(y_train_savepath) and os.path.exists(
            x_test_savepath) and os.path.exists(y_test_savepath):
        print('-------------Load Datasets-----------------')
        x_train_save = np.load(x_train_savepath)
        y_train = np.load(y_train_savepath)
        x_test_save = np.load(x_test_savepath)
        y_test = np.load(y_test_savepath)
        x_train = np.reshape(x_train_save, (len(x_train_save), 28, 28))
        x_test = np.reshape(x_test_save, (len(x_test_save), 28, 28))
        
    else:
        print('-------------Generate Datasets-----------------')
        x_train, y_train = generateds(train_path, train_txt)
        x_test, y_test = generateds(test_path, test_txt)
        
        
        print('-------------Save Datasets-----------------')
        x_train_save = np.reshape(x_train, (len(x_train), -1))
        x_test_save = np.reshape(x_test, (len(x_test), -1))
        np.save(x_train_savepath, x_train_save)
        np.save(y_train_savepath, y_train)
        np.save(x_test_savepath, x_test_save)
        np.save(y_test_savepath, y_test)
        
    model = tf.keras.models.Sequential([
        tf.keras.layers.Flatten(),
        tf.keras.layers.Dense(128, activation='relu'),
        tf.keras.layers.Dense(10, activation='softmax')
    ])
    
    model.compile(optimizer='adam',
                  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
                  metrics=['sparse_categorical_accuracy'])
    
    model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1)
    model.summary()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    -------------Load Datasets-----------------
    Epoch 1/5
    1875/1875 [==============================] - 2s 805us/step - loss: 0.2624 - sparse_categorical_accuracy: 0.9248 - val_loss: 0.1434 - val_sparse_categorical_accuracy: 0.9582
    Epoch 2/5
    1875/1875 [==============================] - 1s 751us/step - loss: 0.1173 - sparse_categorical_accuracy: 0.9645 - val_loss: 0.1044 - val_sparse_categorical_accuracy: 0.9687
    Epoch 3/5
    1875/1875 [==============================] - 1s 735us/step - loss: 0.0810 - sparse_categorical_accuracy: 0.9759 - val_loss: 0.0811 - val_sparse_categorical_accuracy: 0.9738
    Epoch 4/5
    1875/1875 [==============================] - 1s 755us/step - loss: 0.0604 - sparse_categorical_accuracy: 0.9812 - val_loss: 0.0761 - val_sparse_categorical_accuracy: 0.9756
    Epoch 5/5
    1875/1875 [==============================] - 1s 733us/step - loss: 0.0474 - sparse_categorical_accuracy: 0.9851 - val_loss: 0.0724 - val_sparse_categorical_accuracy: 0.9762
    Model: "sequential_1"
    _________________________________________________________________
     Layer (type)                Output Shape              Param #   
    =================================================================
     flatten_1 (Flatten)         (None, 784)               0         
                                                                     
     dense_2 (Dense)             (None, 128)               100480    
                                                                     
     dense_3 (Dense)             (None, 10)                1290      
                                                                     
    =================================================================
    Total params: 101,770
    Trainable params: 101,770
    Non-trainable params: 0
    _________________________________________________________________
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26

    2、 数据增强,增大数据量

    2.1、 数据增强(增大数据量)

    image_gen_train = tf.keras.preprocessing.image.ImageDataGenerator(增强方法)

    image_gen_train.fit(x_train)

    常用增强方法:
    缩放系数:rescale = 所有数据将乘以相同的值

    随机旋转:rotation_range=随机旋转角度数范围

    宽度偏移:width_shift_range = 随机宽度偏移量

    高度偏移:height_shift_range = 随机高度偏移量

    水平翻转: horizontal_flip = 是否水平随机翻转

    随机缩放:zoom_range = 随机缩放的范围[1-n, 1+n]

    image_gen_train = ImageDataGenerator(

     rescale=1./255, #原像素值 0~255 归至 0~1
     
     rotation_range=45, #随机 45 度旋转
     
     width_shift_range=.15, #随机宽度偏移 [-0.15,0.15)
     
     height_shift_range=.15, #随机高度偏移 [-0.15,0.15)
     
     horizontal_flip=True, #随机水平翻转
     
     zoom_range=0.5 #随机缩放到 [1-50%, 1+50%]
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11

    )

    2.2、 数据增强可视化 (代码 show_augmented _images.py)

    # 代码 mnist_train_ex2.py:
    
    import tensorflow as tf
    import matplotlib.pyplot as plt
    from tensorflow.keras.preprocessing.image import ImageDataGenerator
    import numpy as np
    
    mnist = tf.keras.datasets.mnist
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)
    
    image_gen_train = ImageDataGenerator(
        rescale=1./255, #原像素值 0~255 归至 0~1
        rotation_range=45, #随机 45 度旋转
        width_shift_range=.15, #随机宽度偏移 [-0.15,0.15)
        height_shift_range=.15, #随机高度偏移 [-0.15,0.15)
        horizontal_flip=True, #随机水平翻转
        zoom_range=0.5) #随机缩放到 [1-50%, 1+50%]
    
    image_gen_train.fit(x_train)
    print("xtrain",x_train.shape)
    
    
    x_train_subset1 = np.squeeze(x_train[:12])
    print("xtrain_subset1",x_train_subset1.shape)
    print("xtrain",x_train.shape)
    
    x_train_subset2 = x_train[:12]  # 一次显示12张图片
    print("xtrain_subset2",x_train_subset2.shape)
    
    fig = plt.figure(figsize=(20,2))
    plt.set_cmap('gray')
    
    #显示原始图片
    for i in range(0, len(x_train_subset1)):
        ax = fig.add_subplot(1,12,i+1)
        ax.set_xticklabels([])
        ax.set_yticklabels([])
        ax.imshow(x_train_subset1[i])
    
    fig.suptitle('Subset of Original Training Images', fontsize=20)
    plt.show()
    
    # 显示增强后的图片
    fig = plt.figure(figsize=(20,2))
    for x_batch in image_gen_train.flow(x_train_subset2, batch_size=12, shuffle=False):
        for i in range(0,12):
            ax = fig.add_subplot(1, 12, i+1)
            ax.set_xticklabels([])
            ax.set_yticklabels([])
            ax.imshow(np.squeeze(x_batch[i]))
        fig.suptitle('Augmented Images', fontsize=20)
        plt.show()
        break
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    xtrain (60000, 28, 28, 1)
    xtrain_subset1 (12, 28, 28)
    xtrain (60000, 28, 28, 1)
    xtrain_subset2 (12, 28, 28, 1)
    
    • 1
    • 2
    • 3
    • 4

    在这里插入图片描述

    在这里插入图片描述

    代码 mnist_train_ex2.py:
    在这里插入图片描述

    import tensorflow as tf
    from tensorflow.keras.preprocessing.image import ImageDataGenerator
    
    mnist = tf.keras.datasets.mnist
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_train, x_test = x_train / 255.0, x_test / 255.0
    x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)  # 给数据增加一个维度,从(60000, 28, 28)reshape为(60000, 28, 28, 1)
    
    image_gen_train = ImageDataGenerator(
        rescale=1. / 1.,  # 如为图像,分母为255时,可归至0~1
        rotation_range=45,  # 随机45度旋转
        width_shift_range=.15,  # 宽度偏移
        height_shift_range=.15,  # 高度偏移
        horizontal_flip=False,  # 水平翻转
        zoom_range=0.5  # 将图像随机缩放阈量50%
    )
    image_gen_train.fit(x_train)
    
    model = tf.keras.models.Sequential([
        tf.keras.layers.Flatten(),
        tf.keras.layers.Dense(128, activation='relu'),
        tf.keras.layers.Dense(10, activation='softmax')
    ])
    
    model.compile(optimizer='adam',
                  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
                  metrics=['sparse_categorical_accuracy'])
    
    model.fit(image_gen_train.flow(x_train, y_train, batch_size=32), epochs=5, validation_data=(x_test, y_test),
              validation_freq=1)
    model.summary()
    
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    Epoch 1/5
    1872/1875 [============================>.] - ETA: 0s - loss: 1.4291 - sparse_categorical_accuracy: 0.5355WARNING:tensorflow:Model was constructed with shape (None, None, None, None) for input KerasTensor(type_spec=TensorSpec(shape=(None, None, None, None), dtype=tf.float32, name='flatten_input'), name='flatten_input', description="created by layer 'flatten_input'"), but it was called on an input with incompatible shape (None, 28, 28).
    1875/1875 [==============================] - 13s 7ms/step - loss: 1.4285 - sparse_categorical_accuracy: 0.5358 - val_loss: 0.4884 - val_sparse_categorical_accuracy: 0.8748
    Epoch 2/5
    1875/1875 [==============================] - 12s 7ms/step - loss: 0.9640 - sparse_categorical_accuracy: 0.7053 - val_loss: 0.3590 - val_sparse_categorical_accuracy: 0.8994
    Epoch 3/5
    1875/1875 [==============================] - 13s 7ms/step - loss: 0.8529 - sparse_categorical_accuracy: 0.7433 - val_loss: 0.2719 - val_sparse_categorical_accuracy: 0.9287
    Epoch 4/5
    1875/1875 [==============================] - 13s 7ms/step - loss: 0.7817 - sparse_categorical_accuracy: 0.7643 - val_loss: 0.2645 - val_sparse_categorical_accuracy: 0.9284
    Epoch 5/5
    1875/1875 [==============================] - 13s 7ms/step - loss: 0.7268 - sparse_categorical_accuracy: 0.7808 - val_loss: 0.2317 - val_sparse_categorical_accuracy: 0.9351
    Model: "sequential"
    _________________________________________________________________
     Layer (type)                Output Shape              Param #   
    =================================================================
     flatten (Flatten)           (None, None)              0         
                                                                     
     dense (Dense)               (None, 128)               100480    
                                                                     
     dense_1 (Dense)             (None, 10)                1290      
                                                                     
    =================================================================
    Total params: 101,770
    Trainable params: 101,770
    Non-trainable params: 0
    _________________________________________________________________
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26

    3、断点续训,存取模型

    3.1 读取模型

    load_weights(路径文件名)
    
    • 1

    例如:

    checkpoint_save_path = './cheakpoint/mnist.ckpt'
    if os.path.exists(checkpoint_save_path + '.index'):
        print('------------------load the model-------------')
        model.load_weights(checkpoint_save_path)
    
    • 1
    • 2
    • 3
    • 4

    3.2、保存模型

    借助tensorflow给出的回调函数,直接保存参数和网络

    tf.keras.callbacks.ModelCheckpoint( 
    	filepath=路径文件名, 
    	save_weights_only=True,
     	monitor='val_loss', # val_loss or loss 
    	save_best_only=True
    )
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    history = model.fit(x_train, y_train, batch_size=32, epochs=5, 
    validation_data=(x_test, y_test), validation_freq=1, 
    callbacks=[cp_callback])
    
    • 1
    • 2
    • 3

    注:monitor配合save_best_only可以保存最优模型,包括:训练损失最小模型、测试损失最小模型、训练准确率最高模型、测试准确率最高模型等。

    代码p18_mnist_train_ex2.py:

    import tensorflow as tf
    import os
    
    mnist = tf.keras.datasets.mnist
    (x_train, y_train), (x_test,y_test) = mnist.load_data()
    x_train, x_test = x_train / 255.0, x_test / 255.0
    
    
    model = tf.keras.models.Sequential([
        tf.keras.layers.Flatten(),
        tf.keras.layers.Dense(128, activation='relu'),
        tf.keras.layers.Dense(10, activation = 'softmax')
    ])
    
    model.compile(
        optimizer = 'adam',
        loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits = False),
        metrics = ['sparse_categorical_accuracy']
    )
    
    checkpoint_save_path = './cheakpoint/mnist.ckpt'
    if os.path.exists(checkpoint_save_path + '.index'):
        print('------------------load the model-------------')
        model.load_weights(checkpoint_save_path)
    
    
    cp_callback = tf.keras.callbacks.ModelCheckpoint(
        filepath = checkpoint_save_path,
        save_weights_only = True,
        save_best_only = True 
    )
    
    history = model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1,callbacks=[cp_callback])
    
    model.summary()
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    Epoch 1/5
    1875/1875 [==============================] - 2s 798us/step - loss: 0.2644 - sparse_categorical_accuracy: 0.9248 - val_loss: 0.1471 - val_sparse_categorical_accuracy: 0.9566
    Epoch 2/5
    1875/1875 [==============================] - 2s 829us/step - loss: 0.1175 - sparse_categorical_accuracy: 0.9650 - val_loss: 0.1162 - val_sparse_categorical_accuracy: 0.9636
    Epoch 3/5
    1875/1875 [==============================] - 1s 786us/step - loss: 0.0801 - sparse_categorical_accuracy: 0.9757 - val_loss: 0.0957 - val_sparse_categorical_accuracy: 0.9696
    Epoch 4/5
    1875/1875 [==============================] - 2s 972us/step - loss: 0.0615 - sparse_categorical_accuracy: 0.9812 - val_loss: 0.0805 - val_sparse_categorical_accuracy: 0.9748
    Epoch 5/5
    1875/1875 [==============================] - 2s 905us/step - loss: 0.0472 - sparse_categorical_accuracy: 0.9854 - val_loss: 0.0737 - val_sparse_categorical_accuracy: 0.9781
    Model: "sequential_2"
    _________________________________________________________________
     Layer (type)                Output Shape              Param #   
    =================================================================
     flatten_2 (Flatten)         (None, 784)               0         
                                                                     
     dense_4 (Dense)             (None, 128)               100480    
                                                                     
     dense_5 (Dense)             (None, 10)                1290      
                                                                     
    =================================================================
    Total params: 101,770
    Trainable params: 101,770
    Non-trainable params: 0
    _________________________________________________________________
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25

    4、参数提取,写至文本

    4.1、提取可训练参数

    model.trainable_variables模型中可训练的参数
    4.2、设置print输出格式

    np.set_printoptions(
    	precision=小数点后按四舍五入保留几位,
    	threshold=数组元素数量少于或等于门槛值,打印全部元素;否则打印门槛值+1个元素,中间用省略号补充
    )
    
    • 1
    • 2
    • 3
    • 4

    np.set_printoptions(precision=5)
    print(np.array([1.123456789]))
    [1.12346]

    np.set_printoptions(threshold=5)
    print(np.arange(10))
    [0 1 2 … , 7 8 9]

    注:precision=np.inf打印完整小数位;threshold=np.nan打印全部数组元素。

    代码p19_mnist_train_ex4.py:

    import tensorflow as tf
    import os
    import numpy as np
    #设置显示全部内容,inf表示无穷大
    np.set_printoptions(threshold = np.inf)
    
    mnist = tf.keras.datasets.mnist
    (x_train, y_train), (x_test,y_test) = mnist.load_data()
    x_train, x_test = x_train / 255.0, x_test / 255.0
    
    
    model = tf.keras.models.Sequential([
        tf.keras.layers.Flatten(),
        tf.keras.layers.Dense(128, activation='relu'),
        tf.keras.layers.Dense(10, activation = 'softmax')
    ])
    
    model.compile(
        optimizer = 'adam',
        loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits = False),
        metrics = ['sparse_categorical_accuracy']
    )
    
    path = 'E:\BaiduNetdiskDownload\中国大学MOOCTF笔记2.1共享给所有学习者\class4\MNIST_FC\mnist_image_label\\'
    checkpoint_save_path = 'cheakpoint/mnist.ckpt'
    if os.path.exists(checkpoint_save_path + '.index'):
        print('------------------load the model-------------')
        model.load_weights(checkpoint_save_path)
    
    
    cp_callback = tf.keras.callbacks.ModelCheckpoint(
        filepath = checkpoint_save_path,
        save_weights_only = True,
        save_best_only = True 
    )
    
    history = model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1,callbacks=[cp_callback])
    
    model.summary()
    
    #打印模型参数,存入文本
    print(model.trainable_variables)
    file = open(path+ 'weight.txt', 'w')
    for v in model.trainable_variables:
        file.write(str(v.name) + '\n')
        file.write(str(v.shape) + '\n')
        file.write(str(v.numpy()) + '\n')
    file.close()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48

    在这里插入图片描述

    5、acc/loss可视化,查看效果

    5.1、acc曲线与loss曲线

    history=model.fit(训练集数据, 训练集标签, batch_size=, epochs=,
    validation_split=用作测试数据的比例,validation_data=测试集, validation_freq=测试频率)
    history:
    loss:训练集loss
    val_loss:测试集loss
    sparse_categorical_accuracy:训练集准确率
    val_sparse_categorical_accuracy:测试集准确率

    代码p20_mnist_trian_ex5.py

    import tensorflow as tf
    import os
    import numpy as np
    
    np.set_printoptions(threshold = np.inf)
    
    mnist = tf.keras.datasets.mnist
    (x_train, y_train), (x_test,y_test) = mnist.load_data()
    x_train, x_test = x_train / 255.0, x_test / 255.0
    
    
    model = tf.keras.models.Sequential([
        tf.keras.layers.Flatten(),
        tf.keras.layers.Dense(128, activation='relu'),
        tf.keras.layers.Dense(10, activation = 'softmax')
    ])
    
    model.compile(
        optimizer = 'adam',
        loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits = False),
        metrics = ['sparse_categorical_accuracy']
    )
    
    path = 'E:\BaiduNetdiskDownload\中国大学MOOCTF笔记2.1共享给所有学习者\class4\MNIST_FC\mnist_image_label\\'
    checkpoint_save_path = 'cheakpoint/mnist.ckpt'
    if os.path.exists(checkpoint_save_path + '.index'):
        print('------------------load the model-------------')
        model.load_weights(checkpoint_save_path)
    
    
    cp_callback = tf.keras.callbacks.ModelCheckpoint(
        filepath = checkpoint_save_path,
        save_weights_only = True,
        save_best_only = True 
    )
    
    history = model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1,callbacks=[cp_callback])
    
    model.summary()
    
    
    print(model.trainable_variables)
    file = open(path + 'weight.txt', 'w')
    for v in model.trainable_variables:
        file.write(str(v.name) + '\n')
        file.write(str(v.shape) + '\n')
        file.write(str(v.numpy()) + '\n')
    file.close()
    
    
    # 显示训练集和验证集的acc和loss曲线
    # history中读取所需数据
    acc = history.history['sparse_categorical_accuracy']
    val_acc = history.history['val_sparse_categorical_accuracy']
    loss = history.history['loss']
    val_loss = history.history['val_loss']
    
    
    plt.subplot(1, 2, 1)
    plt.plot(acc, label='Training Accuracy')
    plt.plot(val_acc, label='Validation Accuracy')
    plt.title('Training and Validation Accuracy')
    plt.legend()
    
    plt.subplot(1, 2, 2)
    plt.plot(loss, label='Training Loss')
    plt.plot(val_loss, label='Validation Loss')
    plt.title('Training and Validation Loss')
    plt.legend()
    plt.show()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70

    在这里插入图片描述

    6、应用程序,给图识物

    6.1、给图识物

    在这里插入图片描述

    手写十个数,正确率90%以上合格

    6.2、前向传播执行应用

    predict(输入数据, batch_size=整数) 返回前向传播计算结果

    注:predict参数详解。(1)x:输入数据,Numpy 数组(或者 Numpy 数组的列表,如果模型有多个输出);(2)batch_size:整数,由于GPU的特性,batch_size最好选用8,16,32,64……,如果未指定,默认为32;(3)verbose: 日志显示模式,0或1;(4)steps: 声明预测结束之前的总步数(批次样本),默认值 None;(5)返回:预测的 Numpy 数组(或数组列表)。

    模型预测简单三步:
    在这里插入图片描述

    import tensorflow as tf
    import os
    import numpy as np
    from PIL import Image
    
    model_save_path  = './checkpoint/mnist.ckpt'
    
    model = tf.keras.models.Sequential([
        tf.keras.layers.Flatten(input_shape=(28,28)),
        tf.keras.layers.Dense(128, activation='relu'),
        tf.keras.layers.Dense(10, activation = 'softmax')
    ])
    
    # 加载模型
    model.load_weights(model_save_path)
    
    # 预测图片数量
    preNum = int(input("input the number of test pictures: "))
    
    for i in range(preNum):
        # 预测图片打开路径
        image_path = input("the path of test picture: ")
        
        img = Image.open(image_path)
    
        # 调整尺寸和类型
        img = img.resize((28,28), Image.ANTIALIAS)
        img_arr = np.array(img.convert('L'))
        
    
        # 二值化
        for i in range(28):
            for j in range(28):
                if img_arr[i][j] < 200:
                    img_arr[i][j] = 255
                else:
                    img_arr[i][j] = 0
        img_arr = img_arr / 255.0
        x_predict = img_arr[tf.newaxis,...]
    
        # 预测
        result = model.predict(x_predict)
        pred = tf.argmax(result, axis = 1)
        print('\n')
        tf.print(pred)
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
  • 相关阅读:
    Git基本应用<一>:Git安装及GitHub连接
    数学公式识别
    2.最长公共子串
    Linux 系统执行ls 命令出现 Input/output error 解决妙招
    Jmeter中是如何读取MYSQL数据来作为请求参数的?
    libevent学习——event_base
    Liunx 重置MySQL用户密码
    How to control the model in the webots usingthe ros controller ?
    视差特效的原理和实现方法
    linux阻塞IO与非阻塞IO在应用层和驱动层的实现(一)
  • 原文地址:https://blog.csdn.net/wenxingxingxing/article/details/126574442