GitHub - valeoai/BF3S: Boosting Few-Shot Visual Learning with Self-Supervision
(1) Clone the repo:
$ git clone https://github.com/valeoai/BF3S
(2) Install this repository and the dependencies using pip:
$ pip install -e ./BF3S
With this, you can edit the BF3S code on the fly and import function and classes of BF3S in other projects as well.
(3) Optional. To uninstall this package, run:
$ pip uninstall BF3S
(4) Create dataset and experiment directories:
$ cd BF3S $ mkdir ./datasets $ mkdir ./experiments
You can take a look at the Dockerfile if you are uncertain the about steps to install this project.
(1) MiniImagenet To download the MiniImagenet dataset go to this github page and follow the instructions there. Then, set in bf3s/datasets/mini_imagenet_dataset.py the path to where the dataset resides in your machine.
(2) tiered-MiniImagenet To download the tiered-MiniImagenet dataset go to this github page and follow the instructions there. Then, set in bf3s/datasets/tiered_mini_imagenet_dataset.py the path to where the dataset resides in your machine.
(3) ImageNet-FS Download the ImageNet dataset and set in bf3s/datasets/imagenet_dataset.py the path to where the dataset resides in your machine.
(4) CIFAR-FS The dataset will be automatically downloaded when you run the code. Set in bf3s/datasets/cifar100_fewshot_dataset.py the path to where the dataset should be downloaded.
这里我下载的数据集是“MiniImagenet”(因为readme中的MiniImagenet 下载地址无效),它的链接为:https://drive.google.com/file/d/12V7qi-AjrYi6OoJdYcN_k502BM_jcP8D/view
提供该链接的网址为:GitHub - kjunelee/MetaOptNet: Meta-Learning with Differentiable Convex Optimization (CVPR 2019 Oral)
(1) Download the models trained on the MiniImageNet dataset.
# Run from the BF3S directory $ mkdir ./experiments/miniImageNet $ cd ./experiments/miniImageNet # WRN-28-10-based Cosine Classifier (CC) with rotation prediction self-supervision model. $ wget https://github.com/valeoai/BF3S/releases/download/0.1.0/WRNd28w10CosineClassifierRotAugRotSelfsupervision.zip $ unzip WRNd28w10CosineClassifierRotAugRotSelfsupervision.zip # WRN-28-10-based CC with rotation prediction self-supervision model trained with extra unlabeled images from tiered-MiniImageNet. $ wget https://github.com/valeoai/BF3S/releases/download/0.1.0/WRNd28w10CosineClassifierRotAugRotSelfsupervision_SemisupervisedTieredUnlabeled.zip $ unzip WRNd28w10CosineClassifierRotAugRotSelfsupervision_SemisupervisedTieredUnlabeled.zip # WRN-28-10-based CC with location prediction self-supervision model. $ wget https://github.com/valeoai/BF3S/releases/download/0.1.0/WRNd28w10CosineClassifierLocSelfsupervision.zip $ unzip WRNd28w10CosineClassifierLocSelfsupervision.zip $ cd ../../
(2) Download the model trained on the CIFAR-FS dataset.
# Run from the BF3S directory $ mkdir ./experiments/cifar $ cd ./experiments/cifar # WRN-28-10-based CC with rotation prediction self-supervision model. $ wget https://github.com/valeoai/BF3S/releases/download/0.2.0/WRNd28w10CosineClassifierRotAugRotSelfsupervision.zip $ unzip WRNd28w10CosineClassifierRotAugRotSelfsupervision.zip $ cd ../../
(3) Download the model trained on the ImageNet-FS dataset.
# Run from the BF3S directory $ mkdir ./experiments/ImageNet $ cd ./experiments/ImageNet # ResNet10-based CC with rotation prediction self-supervision model. $ wget https://github.com/valeoai/BF3S/releases/download/0.3.0/ResNet10CosineClassifierRotSelfsupervision.zip $ unzip ResNet10CosineClassifierRotSelfsupervision.zip $ cd ../../
To train and test the WRN-28-10 based Cosine Classifier model with rotation prediction self-supervision run (you can skip the training step if you have downloaded the pre-trained model):
# Run from the BF3S directory # Train the model. $ python scripts/train_fewshot.py --config=miniImageNet/WRNd28w10CosineClassifierRotAugRotSelfsupervision # Test the model on the 1-shot setting. $ python scripts/test_fewshot.py --config=miniImageNet/WRNd28w10CosineClassifierRotAugRotSelfsupervision --num_novel=5 --num_train=1 --num_episodes=2000 # Expected 5-way classification accuracy: 62.81% with confidence interval +/- 0.46% # Test the model on the 5-shot setting. $ python scripts/test_fewshot.py --config=miniImageNet/WRNd28w10CosineClassifierRotAugRotSelfsupervision --num_novel=5 --num_train=5 --num_episodes=2000 # Expected 5-way classification accuracy: 80.00% with confidence interval +/- 0.34%
Note that the configuration file (of the above experiment) specified by the config
variable is located here: ./config/miniImageNet/WRNd28w10CosineClassifierRotAugRotSelfsupervision.py
. All the experiment configuration files are placed in the ./config/
directory.
- (imagemol) D:\pycharm_workspace\2\BF3S>python scripts/train_fewshot.py --config=miniImageNet/WRNd28w10CosineClassifierRotAugRotSelfsupervision
- Loading experiment miniImageNet/WRNd28w10CosineClassifierRotAugRotSelfsupervision
- Generated logs and/or snapshots will be stored on D:\pycharm_workspace\2\BF3S\experiments\miniImageNet/WRNd28w10CosineClassifierRotAugRotSelfsupervision
- ==> Download MiniImageNet dataset at ./datasets/MiniImagenet
- Loading mini ImageNet dataset - phase train
- ==> Download MiniImageNet dataset at ./datasets/MiniImagenet
- Loading mini ImageNet dataset - phase val
- 2022-08-24 20:34:00,187 - bf3s.algorithms.algorithm - INFO - ==> Tensorboard file location: D:\pycharm_workspace\2\BF3S\experiments\miniImageNet\WRNd28w10CosineClassifierRotAugRotSelfsupervision\logs\TENSORBOARD
- 2022-08-24 20:34:00,187 - bf3s.algorithms.algorithm - INFO - Algorithm options {'data_train_opt': {'dataset_name': 'MiniImageNet80x80', 'nKnovel': 0, 'nKbase': 64, 'n_exemplars': 0, 'n_test_novel': 0, 'n_test_base': 64, 'batch_size': 1, 'epoch_size': 1000, 'phase': 'train'}, 'data_test_opt': {'dataset_name': 'MiniImageNet80x80', 'nKnovel': 5, 'nKbase': 64, 'n_exemplars': 1, 'n_test_novel': 75, 'n_test_base': 75, 'batch_size': 1, 'epoch_size': 500}, 'max_num_epochs': 26, 'networks': {'feature_extractor': {'def_file': 'feature_extractors.wide_resnet', 'pretrained': None, 'opt': {'depth': 28, 'widen_Factor': 10, 'drop_rate': 0.0, 'pool': 'none'}, 'optim_params': {'optim_type': 'sgd', 'lr': 0.1, 'momentum': 0.9, 'weight_decay': 0.0005, 'nesterov': True, 'LUT_lr': [(20, 0.1), (23, 0.01), (26, 0.001)]}}, 'classifier': {'def_file': 'classifiers.cosine_classifier_with_weight_generator', 'pretrained': None, 'opt': {'num_classes': 64, 'num_features': 640, 'scale_cls': 10, 'learn_scale': True, 'global_pooling': True}, 'optim_params': {'optim_type': 'sgd', 'lr': 0.1, 'momentum': 0.9, 'weight_decay': 0.0005, 'nesterov': True, 'LUT_lr': [(20, 0.1), (23, 0.01), (26, 0.001)]}}, 'classifier_aux': {'def_file': 'classifiers.convnet_plus_classifier', 'pretrained': None, 'opt': {'convnet_type': 'wrn_block', 'convnet_opt': {'num_channels_in': 640, 'num_channels_out': 640, 'num_layers': 4, 'stride': 2}, 'classifier_opt': {'classifier_type': 'cosine', 'num_channels': 640, 'scale_cls': 10.0, 'learn_scale': True, 'num_classes': 4, 'global_pooling': True}}, 'optim_params': {'optim_type': 'sgd', 'lr': 0.1, 'momentum': 0.9, 'weight_decay': 0.0005, 'nesterov': True, 'LUT_lr': [(20, 0.1), (23, 0.01), (26, 0.001)]}}}, 'criterions': {'loss': {'ctype': 'CrossEntropyLoss', 'opt': None}}, 'algorithm_type': 'selfsupervision.fewshot_selfsupervision_rotation', 'auxiliary_rotation_task_coef': 1.0, 'rotation_invariant_classifier': True, 'random_rotation': False, 'exp_dir': 'D:\\pycharm_workspace\\2\\BF3S\\experiments\\miniImageNet/WRNd28w10CosineClassifierRotAugRotSelfsupervision', 'disp_step': 200}
- 2022-08-24 20:34:00,188 - bf3s.algorithms.algorithm - INFO - Set network feature_extractor
- 2022-08-24 20:34:00,188 - bf3s.algorithms.algorithm - INFO - ==> Initiliaze network feature_extractor from file feature_extractors.wide_resnet with opts: {'depth': 28, 'widen_Factor': 10, 'drop_rate': 0.0, 'pool': 'none'}
- 2022-08-24 20:34:00,537 - bf3s.algorithms.algorithm - INFO - ==> Network architecture:
- 2022-08-24 20:34:00,538 - bf3s.algorithms.algorithm - INFO - WideResnet(
- (_feature_blocks): ModuleList(
- (0): Sequential(
- (Conv): Conv2d(3, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
- (BN): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (ReLU): ReLU(inplace=True)
- )
- (1): Sequential(
- (Block): NetworkBlock(
- (layer): Sequential(
- (0): BasicBlock(
- (convResidual): Sequential(
- (conv1): Conv2d(16, 160, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
- (bn2): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (relu2): ReLU(inplace=True)
- (conv2): Conv2d(160, 160, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
- )
- (convShortcut): Conv2d(16, 160, kernel_size=(1, 1), stride=(2, 2), bias=False)
- )
- (1): BasicBlock(
- (convResidual): Sequential(
- (bn1): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (relu1): ReLU(inplace=True)
- (conv1): Conv2d(160, 160, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
- (bn2): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (relu2): ReLU(inplace=True)
- (conv2): Conv2d(160, 160, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
- )
- (convShortcut): Sequential()
- )
- (2): BasicBlock(
- (convResidual): Sequential(
- (bn1): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (relu1): ReLU(inplace=True)
- (conv1): Conv2d(160, 160, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
- (bn2): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (relu2): ReLU(inplace=True)
- (conv2): Conv2d(160, 160, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
- )
- (convShortcut): Sequential()
- )
- (3): BasicBlock(
- (convResidual): Sequential(
- (bn1): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (relu1): ReLU(inplace=True)
- (conv1): Conv2d(160, 160, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
- (bn2): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (relu2): ReLU(inplace=True)
- (conv2): Conv2d(160, 160, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
- )
- (convShortcut): Sequential()
- )
- )
- )
- (BN): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (ReLU): ReLU(inplace=True)
- )
- (2): Sequential(
- (Block): NetworkBlock(
- (layer): Sequential(
- (0): BasicBlock(
- (convResidual): Sequential(
- (conv1): Conv2d(160, 320, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
- (bn2): BatchNorm2d(320, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (relu2): ReLU(inplace=True)
- (conv2): Conv2d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
- )
- (convShortcut): Conv2d(160, 320, kernel_size=(1, 1), stride=(2, 2), bias=False)
- )
- (1): BasicBlock(
- (convResidual): Sequential(
- (bn1): BatchNorm2d(320, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (relu1): ReLU(inplace=True)
- (conv1): Conv2d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
- (bn2): BatchNorm2d(320, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (relu2): ReLU(inplace=True)
- (conv2): Conv2d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
- )
- (convShortcut): Sequential()
- )
- (2): BasicBlock(
- (convResidual): Sequential(
- (bn1): BatchNorm2d(320, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (relu1): ReLU(inplace=True)
- (conv1): Conv2d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
- (bn2): BatchNorm2d(320, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (relu2): ReLU(inplace=True)
- (conv2): Conv2d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
- )
- (convShortcut): Sequential()
- )
- (3): BasicBlock(
- (convResidual): Sequential(
- (bn1): BatchNorm2d(320, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (relu1): ReLU(inplace=True)
- (conv1): Conv2d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
- (bn2): BatchNorm2d(320, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (relu2): ReLU(inplace=True)
- (conv2): Conv2d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
- )
- (convShortcut): Sequential()
- )
- )
- )
- (BN): BatchNorm2d(320, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (ReLU): ReLU(inplace=True)
- )
- (3): Sequential(
- (Block): NetworkBlock(
- (layer): Sequential(
- (0): BasicBlock(
- (convResidual): Sequential(
- (conv1): Conv2d(320, 640, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
- (bn2): BatchNorm2d(640, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (relu2): ReLU(inplace=True)
- (conv2): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
- )
- (convShortcut): Conv2d(320, 640, kernel_size=(1, 1), stride=(2, 2), bias=False)
- )
- (1): BasicBlock(
- (convResidual): Sequential(
- (bn1): BatchNorm2d(640, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (relu1): ReLU(inplace=True)
- (conv1): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
- (bn2): BatchNorm2d(640, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (relu2): ReLU(inplace=True)
- (conv2): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
- )
- (convShortcut): Sequential()
- )
- (2): BasicBlock(
- (convResidual): Sequential(
- (bn1): BatchNorm2d(640, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (relu1): ReLU(inplace=True)
- (conv1): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
- (bn2): BatchNorm2d(640, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (relu2): ReLU(inplace=True)
- (conv2): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
- )
- (convShortcut): Sequential()
- )
- (3): BasicBlock(
- (convResidual): Sequential(
- (bn1): BatchNorm2d(640, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (relu1): ReLU(inplace=True)
- (conv1): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
- (bn2): BatchNorm2d(640, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (relu2): ReLU(inplace=True)
- (conv2): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
- )
- (convShortcut): Sequential()
- )
- )
- )
- (BN): BatchNorm2d(640, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (ReLU): ReLU(inplace=True)
- )
- )
- )
- 2022-08-24 20:34:00,540 - bf3s.algorithms.algorithm - INFO - Set network classifier
- 2022-08-24 20:34:00,540 - bf3s.algorithms.algorithm - INFO - ==> Initiliaze network classifier from file classifiers.cosine_classifier_with_weight_generator with opts: {'num_classes': 64, 'num_features': 640, 'scale_cls': 10, 'learn_scale': True, 'global_pooling': True}
- 2022-08-24 20:34:00,546 - bf3s.algorithms.algorithm - INFO - ==> Network architecture:
- 2022-08-24 20:34:00,546 - bf3s.algorithms.algorithm - INFO - CosineClassifierWithWeightGeneration()
- 2022-08-24 20:34:00,546 - bf3s.algorithms.algorithm - INFO - Set network classifier_aux
- 2022-08-24 20:34:00,546 - bf3s.algorithms.algorithm - INFO - ==> Initiliaze network classifier_aux from file classifiers.convnet_plus_classifier with opts: {'convnet_type': 'wrn_block', 'convnet_opt': {'num_channels_in': 640, 'num_channels_out': 640, 'num_layers': 4, 'stride': 2}, 'classifier_opt': {'classifier_type': 'cosine', 'num_channels': 640, 'scale_cls': 10.0, 'learn_scale': True, 'num_classes': 4, 'global_pooling': True}}
- 2022-08-24 20:34:00,816 - bf3s.algorithms.algorithm - INFO - ==> Network architecture:
- 2022-08-24 20:34:00,816 - bf3s.algorithms.algorithm - INFO - ConvnetPlusClassifier(
- (layers): Sequential(
- (0): WideResnetBlock(
- (block): Sequential(
- (Block): NetworkBlock(
- (layer): Sequential(
- (0): BasicBlock(
- (convResidual): Sequential(
- (conv1): Conv2d(640, 640, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
- (bn2): BatchNorm2d(640, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (relu2): ReLU(inplace=True)
- (conv2): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
- )
- (convShortcut): Conv2d(640, 640, kernel_size=(1, 1), stride=(2, 2), bias=False)
- )
- (1): BasicBlock(
- (convResidual): Sequential(
- (bn1): BatchNorm2d(640, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (relu1): ReLU(inplace=True)
- (conv1): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
- (bn2): BatchNorm2d(640, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (relu2): ReLU(inplace=True)
- (conv2): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
- )
- (convShortcut): Sequential()
- )
- (2): BasicBlock(
- (convResidual): Sequential(
- (bn1): BatchNorm2d(640, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (relu1): ReLU(inplace=True)
- (conv1): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
- (bn2): BatchNorm2d(640, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (relu2): ReLU(inplace=True)
- (conv2): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
- )
- (convShortcut): Sequential()
- )
- (3): BasicBlock(
- (convResidual): Sequential(
- (bn1): BatchNorm2d(640, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (relu1): ReLU(inplace=True)
- (conv1): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
- (bn2): BatchNorm2d(640, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (relu2): ReLU(inplace=True)
- (conv2): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
- )
- (convShortcut): Sequential()
- )
- )
- )
- (BN): BatchNorm2d(640, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (ReLU): ReLU(inplace=True)
- )
- )
- (1): Classifier(
- (layers): CosineClassifier(num_channels=640, num_classes=4, scale_cls=10.0 (learnable=True), normalize_x=True, normalize_w=True, bias=False)
- )
- )
- )
- 2022-08-24 20:34:00,821 - bf3s.algorithms.algorithm - INFO - Initialize criterion[loss]: CrossEntropyLoss with options: None
- 2022-08-24 20:34:00,822 - bf3s.algorithms.algorithm - INFO - ==> Loading criterions to device: cuda
- 2022-08-24 20:34:00,822 - bf3s.algorithms.algorithm - INFO - ==> Loading tensors to device: cuda
- 2022-08-24 20:34:00,962 - bf3s.algorithms.algorithm - INFO - ==> Loading networks to device: cuda
- 2022-08-24 20:42:13,319 - bf3s.algorithms.algorithm - INFO - Initialize optimizer: sgd with params: {'optim_type': 'sgd', 'lr': 0.1, 'momentum': 0.9, 'weight_decay': 0.0005, 'nesterov': True, 'LUT_lr': [(20, 0.1), (23, 0.01), (26, 0.001)]} for netwotk: feature_extractor
- 2022-08-24 20:42:13,319 - bf3s.algorithms.algorithm - INFO - Initialize optimizer: sgd with params: {'optim_type': 'sgd', 'lr': 0.1, 'momentum': 0.9, 'weight_decay': 0.0005, 'nesterov': True, 'LUT_lr': [(20, 0.1), (23, 0.01), (26, 0.001)]} for netwotk: classifier
- 2022-08-24 20:42:13,319 - bf3s.algorithms.algorithm - INFO - Initialize optimizer: sgd with params: {'optim_type': 'sgd', 'lr': 0.1, 'momentum': 0.9, 'weight_decay': 0.0005, 'nesterov': True, 'LUT_lr': [(20, 0.1), (23, 0.01), (26, 0.001)]} for netwotk: classifier_aux
- 2022-08-24 20:42:13,320 - bf3s.algorithms.algorithm - INFO - Training epoch [ 1 / 26]
- 2022-08-24 20:42:13,320 - bf3s.algorithms.algorithm - INFO - ==> Set to feature_extractor optimizer lr = 0.1000000000
- 2022-08-24 20:42:13,320 - bf3s.algorithms.algorithm - INFO - ==> Set to classifier optimizer lr = 0.1000000000
- 2022-08-24 20:42:13,320 - bf3s.algorithms.algorithm - INFO - ==> Set to classifier_aux optimizer lr = 0.1000000000
- 2022-08-24 20:42:13,320 - bf3s.algorithms.algorithm - INFO - Training: WRNd28w10CosineClassifierRotAugRotSelfsupervision
- 2022-08-24 20:42:13,320 - bf3s.algorithms.algorithm - INFO - ==> Dataset: MiniImageNet_train [1000 batches]
- 20%|███████████████▎ | 199/1000 [35:37<1:20:28, 6.03s/it]2022-08-24 21:17:56,249 - bf3s.algorithms.algorithm - INFO - ==> Iteration [ 1][ 200 / 1000]: {'loss_cls': '4.1589', 'loss_rot': '1.2066', 'loss_total': '5.3655', 'Accuracy': '1.6797', 'AccuracyRot': '40.5254'}
- 40%|███████████████████████████████▌ | 399/1000 [55:29<58:49, 5.87s/it]2022-08-24 21:37:48,318 - bf3s.algorithms.algorithm - INFO - ==> Iteration [ 1][ 400 / 1000]: {'loss_cls': '4.1589', 'loss_rot': '1.1953', 'loss_total': '5.3542', 'Accuracy': '1.6172', 'AccuracyRot': '41.2666'}
- 60%|██████████████████████████████████████████████ | 599/1000 [1:15:21<40:07, 6.00s/it]2022-08-24 21:57:40,442 - bf3s.algorithms.algorithm - INFO - ==> Iteration [ 1][ 600 / 1000]: {'loss_cls': '4.1589', 'loss_rot': '1.1900', 'loss_total': '5.3489', 'Accuracy': '1.6198', 'AccuracyRot': '41.5859'}
- 80%|█████████████████████████████████████████████████████████████▌ | 799/1000 [1:34:52<19:36, 5.85s/it]2022-08-24 22:17:11,494 - bf3s.algorithms.algorithm - INFO - ==> Iteration [ 1][ 800 / 1000]: {'loss_cls': '4.1589', 'loss_rot': '1.1859', 'loss_total': '5.3448', 'Accuracy': '1.5781', 'AccuracyRot': '41.8672'}
- 100%|████████████████████████████████████████████████████████████████████████████▉| 999/1000 [1:54:23<00:05, 5.85s/it]2022-08-24 22:36:42,316 - bf3s.algorithms.algorithm - INFO - ==> Iteration [ 1][1000 / 1000]: {'loss_cls': '4.1589', 'loss_rot': '1.1828', 'loss_total': '5.3417', 'Accuracy': '1.5391', 'AccuracyRot': '42.0699'}
- 100%|████████████████████████████████████████████████████████████████████████████| 1000/1000 [1:54:28<00:00, 6.87s/it]
- 2022-08-24 22:36:42,321 - bf3s.algorithms.algorithm - INFO - ==> Training stats: {'loss_cls': '4.1589', 'loss_rot': '1.1828', 'loss_total': '5.3417', 'Accuracy': '1.5391', 'AccuracyRot': '42.0699'}
- 2022-08-24 22:36:45,884 - bf3s.algorithms.algorithm - INFO - Evaluating: WRNd28w10CosineClassifierRotAugRotSelfsupervision
- 2022-08-24 22:36:45,884 - bf3s.algorithms.algorithm - INFO - ==> Dataset: MiniImageNet_val [500 batches]
- 100%|███████████████████████████████████████████████████████████████████████████████████| 500/500 [08:44<00:00, 1.05s/it]
- 2022-08-24 22:45:30,847 - bf3s.algorithms.algorithm - INFO - ==> Results: {'loss': '4.2341', 'AccuracyBoth': '0.8107', 'AccuracyBase': '1.6213', 'AccuracyNovel': '20.0000', 'AccuracyNovel_std': '0.0000', 'AccuracyNovel_cnf': '0.0000'}
- 2022-08-24 22:45:30,848 - bf3s.algorithms.algorithm - INFO - ==> Evaluation stats: {'loss': '4.2341', 'AccuracyBoth': '0.8107', 'AccuracyBase': '1.6213', 'AccuracyNovel': '20.0000', 'AccuracyNovel_std': '0.0000', 'AccuracyNovel_cnf': '0.0000'}
- 2022-08-24 22:45:31,121 - bf3s.algorithms.algorithm - INFO - ==> Best results w.r.t. AccuracyNovel metric: epoch: 1 - {'loss': '4.2341', 'AccuracyBoth': '0.8107', 'AccuracyBase': '1.6213', 'AccuracyNovel': '20.0000', 'AccuracyNovel_std': '0.0000', 'AccuracyNovel_cnf': '0.0000'}
- 2022-08-24 22:45:31,121 - bf3s.algorithms.algorithm - INFO - ==> Best results w.r.t. AccuracyNovel metric: epoch: 1 - {'loss': '4.2341', 'AccuracyBoth': '0.8107', 'AccuracyBase': '1.6213', 'AccuracyNovel': '20.0000', 'AccuracyNovel_std': '0.0000', 'AccuracyNovel_cnf': '0.0000'}
- 2022-08-24 22:45:31,121 - bf3s.algorithms.algorithm - INFO - Training epoch [ 2 / 26]
- 2022-08-24 22:45:31,121 - bf3s.algorithms.algorithm - INFO - ==> Set to feature_extractor optimizer lr = 0.1000000000
- 2022-08-24 22:45:31,121 - bf3s.algorithms.algorithm - INFO - ==> Set to classifier optimizer lr = 0.1000000000
- 2022-08-24 22:45:31,121 - bf3s.algorithms.algorithm - INFO - ==> Set to classifier_aux optimizer lr = 0.1000000000
- 2022-08-24 22:45:31,121 - bf3s.algorithms.algorithm - INFO - Training: WRNd28w10CosineClassifierRotAugRotSelfsupervision
- 2022-08-24 22:45:31,122 - bf3s.algorithms.algorithm - INFO - ==> Dataset: MiniImageNet_train [1000 batches]
- 20%|███████████████▉ | 199/1000 [19:21<1:18:10, 5.86s/it]2022-08-24 23:04:58,476 - bf3s.algorithms.algorithm - INFO - ==> Iteration [ 2][ 200 / 1000]: {'loss_cls': '4.1589', 'loss_rot': '0.8979', 'loss_total': '5.0568', 'Accuracy': '1.8203', 'AccuracyRot': '49.8711'}
- 40%|████████████████████████████████▋ | 399/1000 [38:52<58:36, 5.85s/it]2022-08-24 23:24:29,101 - bf3s.algorithms.algorithm - INFO - ==> Iteration [ 2][ 400 / 1000]: {'loss_cls': '4.1589', 'loss_rot': '0.8896', 'loss_total': '5.0485', 'Accuracy': '1.7109', 'AccuracyRot': '50.1729'}
- 60%|█████████████████████████████████████████████████ | 599/1000 [58:22<39:06, 5.85s/it]2022-08-24 23:43:59,678 - bf3s.algorithms.algorithm - INFO - ==> Iteration [ 2][ 600 / 1000]: {'loss_cls': '4.1589', 'loss_rot': '0.8866', 'loss_total': '5.0454', 'Accuracy': '1.6276', 'AccuracyRot': '50.0618'}
- 80%|███████████████████████████████████████████████████████████████▉ | 799/1000 [1:17:53<19:36, 5.85s/it]2022-08-25 00:03:30,281 - bf3s.algorithms.algorithm - INFO - ==> Iteration [ 2][ 800 / 1000]: {'loss_cls': '4.1589', 'loss_rot': '0.8848', 'loss_total': '5.0437', 'Accuracy': '1.6133', 'AccuracyRot': '50.1372'}
- 100%|███████████████████████████████████████████████████████████████████████████████▉| 999/1000 [1:37:24<00:05, 5.86s/it]2022-08-25 00:23:00,991 - bf3s.algorithms.algorithm - INFO - ==> Iteration [ 2][1000 / 1000]: {'loss_cls': '4.1589', 'loss_rot': '0.8839', 'loss_total': '5.0428', 'Accuracy': '1.6062', 'AccuracyRot': '50.1906'}
- 100%|███████████████████████████████████████████████████████████████████████████████| 1000/1000 [1:37:29<00:00, 5.85s/it]
- 2022-08-25 00:23:00,992 - bf3s.algorithms.algorithm - INFO - ==> Training stats: {'loss_cls': '4.1589', 'loss_rot': '0.8839', 'loss_total': '5.0428', 'Accuracy': '1.6062', 'AccuracyRot': '50.1906'}
- 2022-08-25 00:23:04,586 - bf3s.algorithms.algorithm - INFO - Evaluating: WRNd28w10CosineClassifierRotAugRotSelfsupervision
- 2022-08-25 00:23:04,586 - bf3s.algorithms.algorithm - INFO - ==> Dataset: MiniImageNet_val [500 batches]
- 100%|███████████████████████████████████████████████████████████████████████████████████| 500/500 [08:45<00:00, 1.05s/it]
- 2022-08-25 00:31:49,689 - bf3s.algorithms.algorithm - INFO - ==> Results: {'loss': 'nan', 'AccuracyBoth': '5.5160', 'AccuracyBase': '1.6213', 'AccuracyNovel': '20.0000', 'AccuracyNovel_std': '0.0000', 'AccuracyNovel_cnf': '0.0000'}
- NaN or Inf found in input tensor.
- 2022-08-25 00:31:49,690 - bf3s.algorithms.algorithm - INFO - ==> Evaluation stats: {'loss': 'nan', 'AccuracyBoth': '5.5160', 'AccuracyBase': '1.6213', 'AccuracyNovel': '20.0000', 'AccuracyNovel_std': '0.0000', 'AccuracyNovel_cnf': '0.0000'}
- 2022-08-25 00:31:49,690 - bf3s.algorithms.algorithm - INFO - ==> Best results w.r.t. AccuracyNovel metric: epoch: 1 - {'loss': '4.2341', 'AccuracyBoth': '0.8107', 'AccuracyBase': '1.6213', 'AccuracyNovel': '20.0000', 'AccuracyNovel_std': '0.0000', 'AccuracyNovel_cnf': '0.0000'}
- 2022-08-25 00:31:49,691 - bf3s.algorithms.algorithm - INFO - Training epoch [ 3 / 26]
- 2022-08-25 00:31:49,691 - bf3s.algorithms.algorithm - INFO - ==> Set to feature_extractor optimizer lr = 0.1000000000
- 2022-08-25 00:31:49,691 - bf3s.algorithms.algorithm - INFO - ==> Set to classifier optimizer lr = 0.1000000000
- 2022-08-25 00:31:49,691 - bf3s.algorithms.algorithm - INFO - ==> Set to classifier_aux optimizer lr = 0.1000000000
- 2022-08-25 00:31:49,691 - bf3s.algorithms.algorithm - INFO - Training: WRNd28w10CosineClassifierRotAugRotSelfsupervision
- 2022-08-25 00:31:49,692 - bf3s.algorithms.algorithm - INFO - ==> Dataset: MiniImageNet_train [1000 batches]
- 20%|███████████████▉ | 199/1000 [19:27<1:18:32, 5.88s/it]2022-08-25 00:51:23,095 - bf3s.algorithms.algorithm - INFO - ==> Iteration [ 3][ 200 / 1000]: {'loss_cls': '4.1589', 'loss_rot': '0.8803', 'loss_total': '5.0392', 'Accuracy': '1.5703', 'AccuracyRot': '50.6738'}
- 40%|████████████████████████████████▋ | 399/1000 [39:04<58:56, 5.88s/it]2022-08-25 01:11:00,168 - bf3s.algorithms.algorithm - INFO - ==> Iteration [ 3][ 400 / 1000]: {'loss_cls': '4.1589', 'loss_rot': '0.8798', 'loss_total': '5.0387', 'Accuracy': '1.5781', 'AccuracyRot': '50.5850'}
- 60%|█████████████████████████████████████████████████ | 599/1000 [58:41<39:20, 5.89s/it]2022-08-25 01:30:37,293 - bf3s.algorithms.algorithm - INFO - ==> Iteration [ 3][ 600 / 1000]: {'loss_cls': '4.1589', 'loss_rot': '0.8798', 'loss_total': '5.0387', 'Accuracy': '1.5599', 'AccuracyRot': '50.4466'}
- 80%|███████████████████████████████████████████████████████████████▉ | 799/1000 [1:18:18<19:43, 5.89s/it]2022-08-25 01:50:14,362 - bf3s.algorithms.algorithm - INFO - ==> Iteration [ 3][ 800 / 1000]: {'loss_cls': '4.1589', 'loss_rot': '0.8798', 'loss_total': '5.0386', 'Accuracy': '1.5391', 'AccuracyRot': '50.4712'}
- 100%|███████████████████████████████████████████████████████████████████████████████▉| 999/1000 [1:37:55<00:05, 5.89s/it]2022-08-25 02:09:51,432 - bf3s.algorithms.algorithm - INFO - ==> Iteration [ 3][1000 / 1000]: {'loss_cls': '4.1589', 'loss_rot': '0.8799', 'loss_total': '5.0388', 'Accuracy': '1.5266', 'AccuracyRot': '50.4121'}
- 100%|███████████████████████████████████████████████████████████████████████████████| 1000/1000 [1:38:01<00:00, 5.88s/it]
- 2022-08-25 02:09:51,433 - bf3s.algorithms.algorithm - INFO - ==> Training stats: {'loss_cls': '4.1589', 'loss_rot': '0.8799', 'loss_total': '5.0388', 'Accuracy': '1.5266', 'AccuracyRot': '50.4121'}
- 2022-08-25 02:09:55,060 - bf3s.algorithms.algorithm - INFO - Evaluating: WRNd28w10CosineClassifierRotAugRotSelfsupervision
- 2022-08-25 02:09:55,060 - bf3s.algorithms.algorithm - INFO - ==> Dataset: MiniImageNet_val [500 batches]
- 100%|███████████████████████████████████████████████████████████████████████████████████| 500/500 [08:43<00:00, 1.05s/it]
- 2022-08-25 02:18:38,811 - bf3s.algorithms.algorithm - INFO - ==> Results: {'loss': 'nan', 'AccuracyBoth': '0.8107', 'AccuracyBase': '1.6213', 'AccuracyNovel': '20.0000', 'AccuracyNovel_std': '0.0000', 'AccuracyNovel_cnf': '0.0000'}
- NaN or Inf found in input tensor.
- 2022-08-25 02:18:38,812 - bf3s.algorithms.algorithm - INFO - ==> Evaluation stats: {'loss': 'nan', 'AccuracyBoth': '0.8107', 'AccuracyBase': '1.6213', 'AccuracyNovel': '20.0000', 'AccuracyNovel_std': '0.0000', 'AccuracyNovel_cnf': '0.0000'}
- 2022-08-25 02:18:38,812 - bf3s.algorithms.algorithm - INFO - ==> Best results w.r.t. AccuracyNovel metric: epoch: 1 - {'loss': '4.2341', 'AccuracyBoth': '0.8107', 'AccuracyBase': '1.6213', 'AccuracyNovel': '20.0000', 'AccuracyNovel_std': '0.0000', 'AccuracyNovel_cnf': '0.0000'}
- 2022-08-25 02:18:38,813 - bf3s.algorithms.algorithm - INFO - Training epoch [ 4 / 26]
- 2022-08-25 02:18:38,813 - bf3s.algorithms.algorithm - INFO - ==> Set to feature_extractor optimizer lr = 0.1000000000
- 2022-08-25 02:18:38,813 - bf3s.algorithms.algorithm - INFO - ==> Set to classifier optimizer lr = 0.1000000000
- 2022-08-25 02:18:38,813 - bf3s.algorithms.algorithm - INFO - ==> Set to classifier_aux optimizer lr = 0.1000000000
- 2022-08-25 02:18:38,813 - bf3s.algorithms.algorithm - INFO - Training: WRNd28w10CosineClassifierRotAugRotSelfsupervision
- 2022-08-25 02:18:38,814 - bf3s.algorithms.algorithm - INFO - ==> Dataset: MiniImageNet_train [1000 batches]
- 20%|███████████████▉ | 199/1000 [19:25<1:18:24, 5.87s/it]2022-08-25 02:38:09,951 - bf3s.algorithms.algorithm - INFO - ==> Iteration [ 4][ 200 / 1000]: {'loss_cls': '4.1589', 'loss_rot': '0.8806', 'loss_total': '5.0395', 'Accuracy': '1.6406', 'AccuracyRot': '50.6211'}
- 40%|████████████████████████████████▋ | 399/1000 [38:59<58:47, 5.87s/it]2022-08-25 02:57:44,382 - bf3s.algorithms.algorithm - INFO - ==> Iteration [ 4][ 400 / 1000]: {'loss_cls': '4.1589', 'loss_rot': '0.8802', 'loss_total': '5.0391', 'Accuracy': '1.6211', 'AccuracyRot': '50.7100'}
- 60%|█████████████████████████████████████████████████ | 599/1000 [58:34<39:14, 5.87s/it]2022-08-25 03:17:18,876 - bf3s.algorithms.algorithm - INFO - ==> Iteration [ 4][ 600 / 1000]: {'loss_cls': '4.1589', 'loss_rot': '0.8802', 'loss_total': '5.0391', 'Accuracy': '1.5547', 'AccuracyRot': '50.6224'}
- 80%|███████████████████████████████████████████████████████████████▉ | 799/1000 [1:18:08<19:39, 5.87s/it]2022-08-25 03:36:53,327 - bf3s.algorithms.algorithm - INFO - ==> Iteration [ 4][ 800 / 1000]: {'loss_cls': '4.1589', 'loss_rot': '0.8800', 'loss_total': '5.0389', 'Accuracy': '1.6055', 'AccuracyRot': '50.5508'}
- 100%|███████████████████████████████████████████████████████████████████████████████▉| 999/1000 [1:37:43<00:05, 5.87s/it]2022-08-25 03:56:27,810 - bf3s.algorithms.algorithm - INFO - ==> Iteration [ 4][1000 / 1000]: {'loss_cls': '4.1589', 'loss_rot': '0.8800', 'loss_total': '5.0389', 'Accuracy': '1.5609', 'AccuracyRot': '50.4820'}
- 100%|███████████████████████████████████████████████████████████████████████████████| 1000/1000 [1:37:48<00:00, 5.87s/it]
- 2022-08-25 03:56:27,811 - bf3s.algorithms.algorithm - INFO - ==> Training stats: {'loss_cls': '4.1589', 'loss_rot': '0.8800', 'loss_total': '5.0389', 'Accuracy': '1.5609', 'AccuracyRot': '50.4820'}
- 2022-08-25 03:56:31,390 - bf3s.algorithms.algorithm - INFO - Evaluating: WRNd28w10CosineClassifierRotAugRotSelfsupervision
- 2022-08-25 03:56:31,390 - bf3s.algorithms.algorithm - INFO - ==> Dataset: MiniImageNet_val [500 batches]
- 100%|███████████████████████████████████████████████████████████████████████████████████| 500/500 [08:43<00:00, 1.05s/it]
- 2022-08-25 04:05:15,021 - bf3s.algorithms.algorithm - INFO - ==> Results: {'loss': 'nan', 'AccuracyBoth': '0.8107', 'AccuracyBase': '1.6213', 'AccuracyNovel': '20.0000', 'AccuracyNovel_std': '0.0000', 'AccuracyNovel_cnf': '0.0000'}
- NaN or Inf found in input tensor.
- 2022-08-25 04:05:15,022 - bf3s.algorithms.algorithm - INFO - ==> Evaluation stats: {'loss': 'nan', 'AccuracyBoth': '0.8107', 'AccuracyBase': '1.6213', 'AccuracyNovel': '20.0000', 'AccuracyNovel_std': '0.0000', 'AccuracyNovel_cnf': '0.0000'}
- 2022-08-25 04:05:15,023 - bf3s.algorithms.algorithm - INFO - ==> Best results w.r.t. AccuracyNovel metric: epoch: 1 - {'loss': '4.2341', 'AccuracyBoth': '0.8107', 'AccuracyBase': '1.6213', 'AccuracyNovel': '20.0000', 'AccuracyNovel_std': '0.0000', 'AccuracyNovel_cnf': '0.0000'}
- 2022-08-25 04:05:15,023 - bf3s.algorithms.algorithm - INFO - Training epoch [ 5 / 26]
- 2022-08-25 04:05:15,023 - bf3s.algorithms.algorithm - INFO - ==> Set to feature_extractor optimizer lr = 0.1000000000
- 2022-08-25 04:05:15,023 - bf3s.algorithms.algorithm - INFO - ==> Set to classifier optimizer lr = 0.1000000000
- 2022-08-25 04:05:15,023 - bf3s.algorithms.algorithm - INFO - ==> Set to classifier_aux optimizer lr = 0.1000000000
- 2022-08-25 04:05:15,024 - bf3s.algorithms.algorithm - INFO - Training: WRNd28w10CosineClassifierRotAugRotSelfsupervision
- 2022-08-25 04:05:15,024 - bf3s.algorithms.algorithm - INFO - ==> Dataset: MiniImageNet_train [1000 batches]
- 20%|███████████████▉ | 199/1000 [19:25<1:18:23, 5.87s/it]2022-08-25 04:24:46,183 - bf3s.algorithms.algorithm - INFO - ==> Iteration [ 5][ 200 / 1000]: {'loss_cls': '4.1589', 'loss_rot': '0.8810', 'loss_total': '5.0398', 'Accuracy': '1.4141', 'AccuracyRot': '50.5742'}
- 40%|████████████████████████████████▋ | 399/1000 [38:59<58:50, 5.87s/it]2022-08-25 04:44:20,688 - bf3s.algorithms.algorithm - INFO - ==> Iteration [ 5][ 400 / 1000]: {'loss_cls': '4.1589', 'loss_rot': '0.8805', 'loss_total': '5.0393', 'Accuracy': '1.4414', 'AccuracyRot': '50.4531'}
- 60%|█████████████████████████████████████████████████ | 599/1000 [58:34<39:14, 5.87s/it]2022-08-25 05:03:55,117 - bf3s.algorithms.algorithm - INFO - ==> Iteration [ 5][ 600 / 1000]: {'loss_cls': '4.1589', 'loss_rot': '0.8801', 'loss_total': '5.0390', 'Accuracy': '1.4661', 'AccuracyRot': '50.4648'}
- 80%|███████████████████████████████████████████████████████████████▉ | 799/1000 [1:18:08<19:41, 5.88s/it]2022-08-25 05:23:29,643 - bf3s.algorithms.algorithm - INFO - ==> Iteration [ 5][ 800 / 1000]: {'loss_cls': '4.1589', 'loss_rot': '0.8800', 'loss_total': '5.0388', 'Accuracy': '1.5000', 'AccuracyRot': '50.4761'}
- 100%|███████████████████████████████████████████████████████████████████████████████▉| 999/1000 [1:37:43<00:05, 5.87s/it]2022-08-25 05:43:04,090 - bf3s.algorithms.algorithm - INFO - ==> Iteration [ 5][1000 / 1000]: {'loss_cls': '4.1589', 'loss_rot': '0.8799', 'loss_total': '5.0387', 'Accuracy': '1.4969', 'AccuracyRot': '50.5203'}
- 100%|███████████████████████████████████████████████████████████████████████████████| 1000/1000 [1:37:49<00:00, 5.87s/it]
- 2022-08-25 05:43:04,091 - bf3s.algorithms.algorithm - INFO - ==> Training stats: {'loss_cls': '4.1589', 'loss_rot': '0.8799', 'loss_total': '5.0387', 'Accuracy': '1.4969', 'AccuracyRot': '50.5203'}
- 2022-08-25 05:43:07,710 - bf3s.algorithms.algorithm - INFO - Evaluating: WRNd28w10CosineClassifierRotAugRotSelfsupervision
- 2022-08-25 05:43:07,710 - bf3s.algorithms.algorithm - INFO - ==> Dataset: MiniImageNet_val [500 batches]
- 100%|███████████████████████████████████████████████████████████████████████████████████| 500/500 [08:46<00:00, 1.05s/it]
- 2022-08-25 05:51:53,727 - bf3s.algorithms.algorithm - INFO - ==> Results: {'loss': 'nan', 'AccuracyBoth': '0.8107', 'AccuracyBase': '1.6213', 'AccuracyNovel': '20.0000', 'AccuracyNovel_std': '0.0000', 'AccuracyNovel_cnf': '0.0000'}
- NaN or Inf found in input tensor.
- 2022-08-25 05:51:53,728 - bf3s.algorithms.algorithm - INFO - ==> Evaluation stats: {'loss': 'nan', 'AccuracyBoth': '0.8107', 'AccuracyBase': '1.6213', 'AccuracyNovel': '20.0000', 'AccuracyNovel_std': '0.0000', 'AccuracyNovel_cnf': '0.0000'}
- 2022-08-25 05:51:53,729 - bf3s.algorithms.algorithm - INFO - ==> Best results w.r.t. AccuracyNovel metric: epoch: 1 - {'loss': '4.2341', 'AccuracyBoth': '0.8107', 'AccuracyBase': '1.6213', 'AccuracyNovel': '20.0000', 'AccuracyNovel_std': '0.0000', 'AccuracyNovel_cnf': '0.0000'}
- 2022-08-25 05:51:53,729 - bf3s.algorithms.algorithm - INFO - Training epoch [ 6 / 26]
- 2022-08-25 05:51:53,729 - bf3s.algorithms.algorithm - INFO - ==> Set to feature_extractor optimizer lr = 0.1000000000
- 2022-08-25 05:51:53,729 - bf3s.algorithms.algorithm - INFO - ==> Set to classifier optimizer lr = 0.1000000000
- 2022-08-25 05:51:53,729 - bf3s.algorithms.algorithm - INFO - ==> Set to classifier_aux optimizer lr = 0.1000000000
- 2022-08-25 05:51:53,729 - bf3s.algorithms.algorithm - INFO - Training: WRNd28w10CosineClassifierRotAugRotSelfsupervision
- 2022-08-25 05:51:53,730 - bf3s.algorithms.algorithm - INFO - ==> Dataset: MiniImageNet_train [1000 batches]
- 20%|███████████████▉ | 199/1000 [19:25<1:18:26, 5.88s/it]2022-08-25 06:11:24,909 - bf3s.algorithms.algorithm - INFO - ==> Iteration [ 6][ 200 / 1000]: {'loss_cls': '4.1589', 'loss_rot': '0.8808', 'loss_total': '5.0397', 'Accuracy': '1.6875', 'AccuracyRot': '50.5273'}
- 40%|████████████████████████████████▋ | 399/1000 [38:59<58:48, 5.87s/it]2022-08-25 06:30:59,362 - bf3s.algorithms.algorithm - INFO - ==> Iteration [ 6][ 400 / 1000]: {'loss_cls': '4.1589', 'loss_rot': '0.8799', 'loss_total': '5.0388', 'Accuracy': '1.6445', 'AccuracyRot': '50.4277'}
- 60%|█████████████████████████████████████████████████ | 599/1000 [58:32<39:15, 5.87s/it]2022-08-25 06:50:32,443 - bf3s.algorithms.algorithm - INFO - ==> Iteration [ 6][ 600 / 1000]: {'loss_cls': '4.1589', 'loss_rot': '0.8795', 'loss_total': '5.0384', 'Accuracy': '1.5911', 'AccuracyRot': '50.5195'}
- 80%|███████████████████████████████████████████████████████████████▉ | 799/1000 [1:18:07<19:40, 5.87s/it]2022-08-25 07:10:06,814 - bf3s.algorithms.algorithm - INFO - ==> Iteration [ 6][ 800 / 1000]: {'loss_cls': '4.1589', 'loss_rot': '0.8794', 'loss_total': '5.0382', 'Accuracy': '1.5820', 'AccuracyRot': '50.5464'}
- 100%|███████████████████████████████████████████████████████████████████████████████▉| 999/1000 [1:37:41<00:05, 5.87s/it]2022-08-25 07:29:41,270 - bf3s.algorithms.algorithm - INFO - ==> Iteration [ 6][1000 / 1000]: {'loss_cls': '4.1589', 'loss_rot': '0.8792', 'loss_total': '5.0381', 'Accuracy': '1.5641', 'AccuracyRot': '50.5418'}
- 100%|███████████████████████████████████████████████████████████████████████████████| 1000/1000 [1:37:47<00:00, 5.87s/it]
- 2022-08-25 07:29:41,271 - bf3s.algorithms.algorithm - INFO - ==> Training stats: {'loss_cls': '4.1589', 'loss_rot': '0.8792', 'loss_total': '5.0381', 'Accuracy': '1.5641', 'AccuracyRot': '50.5418'}
- 2022-08-25 07:29:44,885 - bf3s.algorithms.algorithm - INFO - Evaluating: WRNd28w10CosineClassifierRotAugRotSelfsupervision
- 2022-08-25 07:29:44,885 - bf3s.algorithms.algorithm - INFO - ==> Dataset: MiniImageNet_val [500 batches]
- 100%|███████████████████████████████████████████████████████████████████████████████████| 500/500 [08:45<00:00, 1.05s/it]
- 2022-08-25 07:38:30,437 - bf3s.algorithms.algorithm - INFO - ==> Results: {'loss': 'nan', 'AccuracyBoth': '0.8107', 'AccuracyBase': '1.6213', 'AccuracyNovel': '20.0000', 'AccuracyNovel_std': '0.0000', 'AccuracyNovel_cnf': '0.0000'}
- NaN or Inf found in input tensor.
- 2022-08-25 07:38:30,438 - bf3s.algorithms.algorithm - INFO - ==> Evaluation stats: {'loss': 'nan', 'AccuracyBoth': '0.8107', 'AccuracyBase': '1.6213', 'AccuracyNovel': '20.0000', 'AccuracyNovel_std': '0.0000', 'AccuracyNovel_cnf': '0.0000'}
- 2022-08-25 07:38:30,438 - bf3s.algorithms.algorithm - INFO - ==> Best results w.r.t. AccuracyNovel metric: epoch: 1 - {'loss': '4.2341', 'AccuracyBoth': '0.8107', 'AccuracyBase': '1.6213', 'AccuracyNovel': '20.0000', 'AccuracyNovel_std': '0.0000', 'AccuracyNovel_cnf': '0.0000'}
- 2022-08-25 07:38:30,438 - bf3s.algorithms.algorithm - INFO - Training epoch [ 7 / 26]
- 2022-08-25 07:38:30,439 - bf3s.algorithms.algorithm - INFO - ==> Set to feature_extractor optimizer lr = 0.1000000000
- 2022-08-25 07:38:30,439 - bf3s.algorithms.algorithm - INFO - ==> Set to classifier optimizer lr = 0.1000000000
- 2022-08-25 07:38:30,439 - bf3s.algorithms.algorithm - INFO - ==> Set to classifier_aux optimizer lr = 0.1000000000
- 2022-08-25 07:38:30,439 - bf3s.algorithms.algorithm - INFO - Training: WRNd28w10CosineClassifierRotAugRotSelfsupervision
- 2022-08-25 07:38:30,440 - bf3s.algorithms.algorithm - INFO - ==> Dataset: MiniImageNet_train [1000 batches]
- 20%|███████████████▉ | 199/1000 [19:23<1:18:18, 5.87s/it]2022-08-25 07:58:00,266 - bf3s.algorithms.algorithm - INFO - ==> Iteration [ 7][ 200 / 1000]: {'loss_cls': '4.1589', 'loss_rot': '0.8805', 'loss_total': '5.0394', 'Accuracy': '1.6953', 'AccuracyRot': '50.3262'}
- 34%|███████████████████████████▌
To train and test the WRN-28-10 based CC few-shot model with rotation prediction self-supervision which also exploits (with the semi-supervised learning setting) unlabeled images from tiered-MiniImageNet, run (you can skip the training step if you have downloaded the pre-trained model):
# Run from the BF3S directory # Train the model. $ python scripts/train_fewshot.py --config=miniImageNet/WRNd28w10CosineClassifierRotAugRotSelfsupervision_SemisupervisedTieredUnlabeled # Test the model on the 1-shot setting. $ python scripts/test_fewshot.py --config=miniImageNet/WRNd28w10CosineClassifierRotAugRotSelfsupervision_SemisupervisedTieredUnlabeled --num_novel=5 --num_train=1 --num_episodes=2000 # Expected 5-way classification accuracy: 64.03% with confidence interval +/- 0.46% # Test the model on the 5-shot setting. $ python scripts/test_fewshot.py --config=miniImageNet/WRNd28w10CosineClassifierRotAugRotSelfsupervision_SemisupervisedTieredUnlabeled --num_novel=5 --num_train=5 --num_episodes=2000 # Expected 5-way classification accuracy: 80.68% with confidence interval +/- 0.33%
To train and test the WRN-28-10 based Cosine Classifier few-shot model with relative patch location prediction self-supervision run (you can skip the training step if you have downloaded the pre-trained model):
# Run from the BF3S directory # Train the model. $ python scripts/train_fewshot.py --config=miniImageNet/WRNd28w10CosineClassifierLocSelfsupervision # Test the model on the 1-shot setting. $ python scripts/test_fewshot.py --config=miniImageNet/WRNd28w10CosineClassifierLocSelfsupervision --num_novel=5 --num_train=1 --num_episodes=2000 # Expected 5-way classification accuracy: 60.70% with confidence interval +/- 0.47% # Test the model on the 5-shot setting. $ python scripts/test_fewshot.py --config=miniImageNet/WRNd28w10CosineClassifierLocSelfsupervision --num_novel=5 --num_train=5 --num_episodes=2000 # Expected 5-way classification accuracy: 77.61% with confidence interval +/- 0.33%
To train and test the WRN-28-10 based Cosine Classifier few-shot model with rotation prediction self-supervision and rotation augmentations run (you can skip the training step if you have downloaded the pre-trained model):
# Run from the BF3S directory # Train the model. $ python scripts/train_fewshot.py --config=cifar/WRNd28w10CosineClassifierRotAugRotSelfsupervision # Test the model on the 1-shot setting. $ python scripts/test_fewshot.py --config=cifar/WRNd28w10CosineClassifierRotAugRotSelfsupervision --num_novel=5 --num_train=1 --num_episodes=5000 # Expected 5-way classification accuracy: 75.38% with confidence interval +/- 0.31% # Test the model on the 5-shot setting. $ python scripts/test_fewshot.py --config=cifar/WRNd28w10CosineClassifierRotAugRotSelfsupervision --num_novel=5 --num_train=5 --num_episodes=5000 # Expected 5-way classification accuracy: 87.25% with confidence interval +/- 0.21%
Instructions for training and testing the CC few-shot model with rotation prediction self-supervision on the ImageNet based few-shot benchmark [1, 2].
(1) To train the ResNet10 based Cosine Classifier few-shot model with rotation prediction self-supervision and rotation augmentations run:
# Run from the BF3S directory $ python scripts/train_fewshot.py --config=ImageNet/ResNet10CosineClassifierRotSelfsupervision --num_workers=8
You can skip the above training step if you have downloaded the pre-trained model.
(2) Extract and save the ResNet10 features (with the above model) from images of the ImageNet dataset:
# Run from the BF3S directory # Extract features from the validation image split of the Imagenet. $ python scripts/save_features_imagenet.py --config=ImageNet/ResNet10CosineClassifierRotSelfsupervision --split='val' # Extract features from the training image split of the Imagenet. $ python scripts/save_features_imagenet.py with config=ImageNet/ResNet10CosineClassifierRotSelfsupervision --split='train'
The features will be saved on ./datasets/feature_datasets/ImageNet/ResNet10CosineClassifierRotSelfsupervision
.
(4) Test the model:
# Run from the BF3S directory # Test the CC+Rot model on the 1-shot setting. $ python scripts/test_fewshot_imagenet.py --config=ImageNet/ResNet10CosineClassifierRotSelfsupervision_eval --testset --num_train=1 --bias_novel=0.8 # ==> Top 5 Accuracies: [Novel: 46.43 | Base: 93.52 | All 57.88] # Test the CC+Rot model on the 2-shot setting. $ python scripts/test_fewshot_imagenet.py --config=ImageNet/ResNet10CosineClassifierRotSelfsupervision_eval --testset --num_train=2 --bias_novel=0.75 # ==> Top 5 Accuracies: [Novel: 57.80 | Base: 93.52 | All 64.76] # Test the CC+Rot model on the 5-shot setting. $ python scripts/test_fewshot_imagenet.py --config=ImageNet/ResNet10CosineClassifierRotSelfsupervision_eval --testset --num_train=5 --bias_novel=0.7 # ==> Top 5 Accuracies: [Novel: 69.67 | Base: 93.52 | All 72.29] # Test the CC+Rot model on the 10-shot setting. $ python scripts/test_fewshot_imagenet.py --config=ImageNet/ResNet10CosineClassifierRotSelfsupervision_eval --testset --num_train=10 --bias_novel=0.65 # ==> Top 5 Accuracies: [Novel: 74.64 | Base: 93.52 | All 75.63] # Test the CC+Rot model on the 20-shot setting. $ python scripts/test_fewshot_imagenet.py --config=ImageNet/ResNet10CosineClassifierRotSelfsupervision_eval --testset --num_train=20 --bias_novel=0.6 # ==> Top 5 Accuracies: [Novel: 77.31 | Base: 93.52 | All 77.40]
Note that here, to evaluate the model trained with the ./config/ImageNet/ResNet10CosineClassifierRotSelfsupervision.py
config file, we used a different config file named ./config/ImageNet/ResNet10CosineClassifierRotSelfsupervision_eval.py
. Also, the --bias_novel
term specifies a multiplicative bias for the classification scores of the novel classes. Its purpose is to balance the classification scores of the base and novel classes (necessary since the classifiers for those two different classes are trained in different ways and different stages). It only affects the All classification accuracy metrics. The used bias values were tuned on the validation split.