A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
If we swap the left and right subtrees of every node, then the resulting tree is called the Mirror Image of a BST.
Now given a sequence of integer keys, you are supposed to tell if it is the preorder traversal sequence of a BST or the mirror image of a BST.
Each input file contains one test case. For each case, the first line contains a positive integer N (≤1000). Then N integer keys are given in the next line. All the numbers in a line are separated by a space.
For each test case, first print in a line YES
if the sequence is the preorder traversal sequence of a BST or the mirror image of a BST, or NO
if not. Then if the answer is YES
, print in the next line the postorder traversal sequence of that tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.
7
8 6 5 7 10 8 11
YES
5 7 6 8 11 10 8
7
8 10 11 8 6 7 5
YES
11 8 10 7 5 6 8
7
8 6 8 5 10 9 11
NO
二叉搜索树符合以下三点:
镜像先序就是:根,右子树,左子树;
镜像后序就是:右子树,左子树,根;
先序就是:根,左子树,右子树;
后序就是:左子树,右子树,根。
题目给出树的先序输出或者是镜像先序输出,如果不是则输出NO,是的话就输出YES以及对应的后序输出。首先我们构造一棵树,然后用四个相应的数组来存储先序,镜像先序,后序,镜像后序的顺序来读取的这棵树。如果与输入的数组顺序相符合,就可以输出对应的后序了。
1. 右子树大于等于根节点;
2. 关于建树的一些问题,指针啥的。
- #include
- using namespace std;
-
- typedef struct Tree{
- int node;
- Tree *left;
- Tree *right;
- };
-
- int N;
- vector<int> t,pre,mpre,post,mpost;
- void read(Tree* &a,int b){//读取数据来建树
- if(a == NULL){
- a = new Tree;
- a->node = b;
- a->left = NULL;
- a->right = NULL;
- return;
- }
- else if(b>=a->node){
- read(a->right,b);
- }
- else{
- read(a->left,b);
- }
- }
-
- void preorder(Tree *a){
- if(a!=NULL){
- pre.push_back(a->node);
- preorder(a->left);
- preorder(a->right);
- }
- }
-
- void mpreorder(Tree *a){
- if(a != NULL){
- mpre.push_back(a->node);
- mpreorder(a->right);
- mpreorder(a->left);
- }
- }
-
- void postorder(Tree *a){
- if(a!=NULL){
- postorder(a->left);
- postorder(a->right);
- post.push_back(a->node);
- }
- }
-
- void mpostorder(Tree *a){
- if(a!=NULL){
- mpostorder(a->right);
- mpostorder(a->left);
- mpost.push_back(a->node);
- }
- }
- int main(){
- Tree *tree = NULL;
- cin>>N;
- for(int i=0;i
- int x;
- cin>>x;
- t.push_back(x);
- read(tree,x);
- }
-
- preorder(tree);
- mpreorder(tree);
- postorder(tree);
- mpostorder(tree);
-
- if(t == pre){
- cout<<"YES"<
- for(auto i=post.begin();i!=post.end();i++){
- if(i==post.begin())
- cout<<*i;
- else
- cout<<" "<<*i;
- }
- }
- else if(t == mpre){
- cout<<"YES"<
- for(auto i=mpost.begin();i!=mpost.end();i++){
- if(i==mpost.begin())
- cout<<*i;
- else
- cout<<" "<<*i;
- }
- }
- else{
- cout<<"NO";
- }
- return 0;
- }
-
相关阅读:
了解一下pnpm
5-3:Spring整合Kafka
【MySQL】内置函数——字符串函数
【UNI】底部梯形按钮组件
学会玩游戏,智能究竟从何而来?
A Frustratingly Easy Approach for Entity and Relation Extraction 论文阅读
世界杯太精彩了,带大家用Python做个足球游戏,边玩游戏边看比赛
生产经验篇(1)——删库,怎么修复?
npm/yarn查看当前网源与设置其它网源
DatabaseUtils: java.lang.IllegalArgumentException: Invalid token LIMIT
-
原文地址:https://blog.csdn.net/weixin_55202895/article/details/126463625