给你一个变量对数组 equations 和一个实数值数组 values 作为已知条件,其中 equations[i] = [Ai, Bi] 和 values[i] 共同表示等式 Ai / Bi = values[i] 。每个 Ai 或 Bi 是一个表示单个变量的字符串。
另有一些以数组 queries 表示的问题,其中 queries[j] = [Cj, Dj] 表示第 j 个问题,请你根据已知条件找出 Cj / Dj = ? 的结果作为答案。
返回 所有问题的答案 。如果存在某个无法确定的答案,则用 -1.0 替代这个答案。如果问题中出现了给定的已知条件中没有出现的字符串,也需要用 -1.0 替代这个答案。
注意:输入总是有效的。你可以假设除法运算中不会出现除数为 0 的情况,且不存在任何矛盾的结果。
示例 1:
输入:equations = [[“a”,“b”],[“b”,“c”]], values = [2.0,3.0], queries = [[“a”,“c”],[“b”,“a”],[“a”,“e”],[“a”,“a”],[“x”,“x”]]
输出:[6.00000,0.50000,-1.00000,1.00000,-1.00000]
解释:
条件:a / b = 2.0, b / c = 3.0
问题:a / c = ?, b / a = ?, a / e = ?, a / a = ?, x / x = ?
结果:[6.0, 0.5, -1.0, 1.0, -1.0 ]
示例 2:
输入:equations = [[“a”,“b”],[“b”,“c”],[“bc”,“cd”]], values = [1.5,2.5,5.0], queries = [[“a”,“c”],[“c”,“b”],[“bc”,“cd”],[“cd”,“bc”]]
输出:[3.75000,0.40000,5.00000,0.20000]
示例 3:
输入:equations = [[“a”,“b”]], values = [0.5], queries = [[“a”,“b”],[“b”,“a”],[“a”,“c”],[“x”,“y”]]
输出:[0.50000,2.00000,-1.00000,-1.00000]
提示:
1 <= equations.length <= 20
equations[i].length == 2
1 <= Ai.length, Bi.length <= 5
values.length == equations.length
0.0 < values[i] <= 20.0
1 <= queries.length <= 20
queries[i].length == 2
1 <= Cj.length, Dj.length <= 5
Ai, Bi, Cj, Dj 由小写英文字母与数字组成
解法:图+深度优先dfs(先构造图再dfs)
参考:指路
解题思路:
先构造图,使用dict实现,其天然的hash可以在in判断时做到O(1)复杂度。
对每个equation如"a/b=v"构造a到b的带权v的有向边和b到a的带权1/v的有向边,
之后对每个query,只需要进行dfs并将路径上的边权重叠乘就是结果了,如果路径不可达则结果为-1。
代码实现:
class Solution:
def calcEquation(self, equations: List[List[str]], values: List[float], queries: List[List[str]]) -> List[float]:
# 构造图,equations的第一项除以第二项等于value里的对应值,第二项除以第一项等于其倒数
graph = {}
for (x, y), v in zip(equations, values):
if x in graph:
graph[x][y] = v
else:
graph[x] = {y: v}
if y in graph:
graph[y][x] = 1/v
else:
graph[y] = {x: 1/v}
# dfs找寻从s到t的路径并返回结果叠乘后的边权重即结果
def dfs(s, t) -> int:
if s not in graph:
return -1
if t == s:
return 1
for node in graph[s].keys():
#print('graph[s]:',graph[s])
#print('graph[s].keys():',graph[s].keys())
if node == t:
return graph[s][node]
elif node not in visited:
visited.add(node) # 添加到已访问避免重复遍历
v = dfs(node, t)
if v != -1:
return graph[s][node]*v
return -1
# 逐个计算query的值
res = []
for qs, qt in queries:
visited = set() #注意每次循环visited都会先清空
res.append(dfs(qs, qt))
return res