输入层是几维的输出层是第n层,等于3n-2,3n-1,3n。虽是3层神经网络,但是去叫做两层BP网络,因为输入层一般不算做一层。
n就该取2,s1就是隐含层节点数,选取的公式是Hornik提出的公式,可以算的s1取值范围,到时自己选取合适值,s2就是你输出层节点数,也就是输出维数。
输出层特点:不论何种类型的人工神经网络,它们共同的特点是,大规模并行处理,分布式存储,弹性拓扑,高度冗余和非线性运算。因而具有很髙的运算速度,很强的联想能力,很强的适应性,很强的容错能力和自组织能力。
这些特点和能力构成了人工神经网络模拟智能活动的技术基础。并在广阔的领域获得了重要的应用。
例如,在通信领域,人工神经网络可以用于数据压缩、图像处理、矢量编码、差错控制(纠错和检错编码)、自适应信号处理、自适应均衡、信号检测、模式识别、ATM流量控制、路由选择、通信网优化和智能网管理等等。
谷歌人工智能写作项目:小发猫