f
′
f
=
−
n
′
n
\frac{f'}{f}=-\frac{n'}{n}
ff′=−nn′
同一介质中
f
′
=
−
f
f'=-f
f′=−f
节平面:
γ
=
±
1
\gamma=\pm 1
γ=±1的一对共轭平面
节点: 节平面∩光轴
x
J
=
f
′
x
J
′
=
f
x_J=f' ~~ x_J'=f
xJ=f′xJ′=f
2.成像性质
3.图解法
4.解析法
牛顿公式
x
x
′
=
f
f
′
xx'=ff'
xx′=ff′
高斯公式
f
′
l
′
+
f
l
=
1
\frac{f'}{l'}+\frac{f}{l}=1
l′f′+lf=1
同一介质
1
l
′
−
1
l
=
1
f
′
\frac{1}{l'}-\frac{1}{l}=\frac{1}{f'}
l′1−l1=f′1
焦距关系
f
′
f
=
−
n
′
n
\frac{f'}{f}=-\frac{n'}{n}
ff′=−nn′
5.理想光学系统放大率
垂轴放大率
β
=
y
′
y
\beta=\frac{y'}{y}
β=yy′
β
=
−
f
f
′
l
′
l
=
n
n
′
l
′
l
β
=
−
f
x
=
−
x
′
f
′
\beta=-\frac{f}{f'}\frac{l'}{l}=\frac{n}{n'}\frac{l'}{l} ~~~~ \beta=-\frac{f}{x}=-\frac{x'}{f'}
β=−f′fll′=n′nll′β=−xf=−f′x′
轴向放大率
α
=
d
x
′
d
x
=
d
l
′
d
l
\alpha=\frac{dx'}{dx}=\frac{dl'}{dl}
α=dxdx′=dldl′
α
=
−
f
′
f
β
2
=
n
′
n
β
2
α
=
−
x
′
x
\alpha=-\frac{f'}{f}\beta^2=\frac{n'}{n}\beta^2 ~~~~ \alpha=-\frac{x'}{x}
α=−ff′β2=nn′β2α=−xx′
角放大率
γ
=
tan
U
′
tan
U
\gamma=\frac{\tan U'}{\tan U}
γ=tanUtanU′
γ
=
n
n
′
1
β
\gamma=\frac{n}{n'}\frac{1}{\beta}
γ=n′nβ1
α
γ
=
β
\alpha\gamma=\beta
αγ=β
6.光学系统组合公式
光焦度:
φ
1
=
1
f
1
′
,
φ
2
=
1
f
2
′
\varphi_1=\frac{1}{f_1'}, \varphi_2=\frac{1}{f_2'}
φ1=f1′1,φ2=f2′1