笔记整理:徐雅静,浙江大学在读硕士,研究方向为知识图谱的表示学习,零样本学习。
KGC指的是在不完整的KG中推理出缺失的实体。以前的多数工作仅仅考虑到直推式场景(实体都存在KG中),不能有效地解决归纳式场景(包含新出现的实体)。近年来一些基于图神经网络的方法通过聚合邻居信息来从相邻的辅助三元组捕获一些不确定的语义信息解决归纳式场景问题。但是那些方法都忽视了利用现存三元组中包含的关系语义去为新出现的实体提供更加丰富的表示信息。本文中,作者提出了一个新的模型CFAG,它分别利用粗粒度的聚合器(CG-AGG)和细粒度的生成对抗网络(FG-GAN)来解决归纳式场景。模型整个流程图如下图所示:
为了使用粗粒度的关系语义,本文首先将KG转化成一个超图,然后使用一个基于HGNN的全局聚合器去捕获全局实体信息和一个基于GNN的局部聚合器去捕获局部实体信息。最后,结合两个聚合器去获取带有多种语义的实体表示。
•超图构造过程:在超图中,超边是结点的非空子集。本文为每个关系构造两个超边 、 ,分别表示关系r关于头实体和尾实体的集合。本文中关于KG的超图被定义为, Z = 是超边的集合,是实体的集合,