面试官在面试候选人时,如果发现候选人的简历中写了在项目中使用了 MQ 技术(如 Kafka、RabbitMQ、RocketMQ),基本都会抛出一个问题:在使用 MQ 的时候,怎么确保消息 100% 不丢失?
这个问题在实际工作中很常见,既能考察候选者对于 MQ 中间件技术的掌握程度,又能很好地区分候选人的能力水平。接下来,我们就从这个问题出发,探讨你应该掌握的基础知识和答题思路,以及延伸的面试考点。
以京东系统为例,用户在购买商品时,通常会选择用京豆抵扣一部分的金额,在这个过程中,交易服务和京豆服务通过 MQ 消息队列进行通信。在下单时,交易服务发送“扣减账户 X 100 个京豆”的消息给 MQ 消息队列,而京豆服务则在消费端消费这条命令,实现真正的扣减操作。
那在这个过程中你会遇到什么问题呢?
要知道,在互联网面试中,引入 MQ 消息中间件最直接的目的是:做系统解耦合流量控制,追其根源还是为了解决互联网系统的高可用和高性能问题。
不过引入 MQ 虽然实现了系统解耦合流量控制,也会带来其他问题。
引入 MQ 消息中间件实现系统解耦,会影响系统之间数据传输的一致性。 在分布式系统中,如果两个节点之间存在数据同步,就会带来数据一致性的问题。同理,在这一讲你要解决的就是:消息生产端和消息消费端的消息数据一致性问题(也就是如何确保消息不丢失)。
而引入 MQ 消息中间件解决流量控制 , 会使消费端处理能力不足从而导致消息积压,这也是你要解决的问题