为了解决上述问题,我们引入了一种利用注意力机制和小波变换的新型可训练管道。更具体地说,我们提出的方法的输入是 RAW 图像及其去马赛克对应物的组合作为补充,其中双分支设计旨在强调不同的训练任务,即 RAW 模型的噪声去除和细节恢复以及去马赛克模型上的颜色映射;采用离散小波变换(DWT)从原始图像中恢复精细的上下文细节,同时保留训练过程中特征的信息量;至于色彩校正和色调映射,则利用 res-dense 连接和注意力机制来鼓励网络将精力放在重点区域上。
Abdelhamed, A., Afifi, M., Timofte, R., Brown, M.S.: NTIRE 2020 challenge on real image denoising: dataset, methods and results. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 496–497 (2020)
Bruhn, A., Weickert, J., Schn¨orr, C.: Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. Int. J. Comput. Vision 61(3), 211–231 (2005). https://doi.org/10.1023/B:VISI.0000045324.43199.43
Cao, Y., Xu, J., Lin, S., Wei, F., Hu, H.: GCNet: non-local networks meet squeezeexcitation networks and beyond. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (2019)
Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the kinetics dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6299–6308 (2017)
Chen, C., Chen, Q., Xu, J., Koltun, V.: Learning to see in the dark. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3291– 3300 (2018)
Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the IEEE European Conference on Computer Vision, pp. 801–818 (2018)
Cheng, D., Price, B., Cohen, S., Brown, M.S.: Beyond white: ground truth colors for color constancy correction. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 298–306 (2015)
Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3- D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)
Feichtenhofer, C., Pinz, A., Zisserman, A.: Convolutional two-stream network fusion for video action recognition. In: Proceedings of the IEEE European Conference on Computer Vision, pp. 1933–1941 (2016)
Gharbi, M., Chaurasia, G., Paris, S., Durand, F.: Deep joint demosaicking and denoising. ACM Trans. Graph. (TOG) 35(6), 1–12 (2016)
He, B., Wang, C., Shi, B., Duan, L.Y.: Mop moire patterns using MopNet. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2424– 2432 (2019)
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)
Ignatov, A., Timofte, R., et al.: AIM 2020 challenge on learned image signal processing pipeline. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12537, pp. 152–170. Springer, Cham (2020)
Ignatov, A., Van Gool, L., Timofte, R.: Replacing mobile camera ISP with a single deep learning model. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 536–537 (2020)
Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1646–1654 (2016)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Kwok, N.M., Shi, H., Ha, Q.P., Fang, G., Chen, S., Jia, X.: Simultaneous image color correction and enhancement using particle swarm optimization. Eng. Appl. Artif. Intell. 26(10), 2356–2371 (2013)
Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681–4690 (2017)
Liu, P., Zhang, H., Zhang, K., Lin, L., Zuo, W.: Multi-level wavelet-CNN for image restoration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 773–782 (2018)
Liu, X., Ma, Y., Shi, Z., Chen, J.: GridDehazeNet: attention-based multi-scale network for image dehazing. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 7314–7323 (2019)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004). https://doi.org/10.1023/B:VISI.0000029664.99615. 94
Lugmayr, A., Danelljan, M., Timofte, R.: NTIRE 2020 challenge on real-world image super-resolution: methods and results. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 494–495 (2020)
Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)
Mei, K., Li, J., Zhang, J., Wu, H., Li, J., Huang, R.: Higher-resolution network for image demosaicing and enhancing. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 3441–3448. IEEE (2019)
Qian, R., Tan, R.T., Yang, W., Su, J., Liu, J.: Attentive generative adversarial network for raindrop removal from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2482–2491 (2018)
Rana, A., Singh, P., Valenzise, G., Dufaux, F., Komodakis, N., Smolic, A.: Deep tone mapping operator for high dynamic range images. IEEE Trans. Image Process. 29, 1285–1298 (2019)
Ratnasingam, S.: Deep camera: a fully convolutional neural network for image signal processing. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (2019)
Rizzi, A., Gatta, C., Marini, D.: A new algorithm for unsupervised global and local color correction. Pattern Recogn. Lett. 24(11), 1663–1677 (2003)
Schwartz, E., Giryes, R., Bronstein, A.M.: DeepISP: toward learning an end-to-end image processing pipeline. IEEE Trans. Image Process. 28(2), 912–923 (2018)
Tao, X., Gao, H., Shen, X., Wang, J., Jia, J.: Scale-recurrent network for deep image deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8174–8182 (2018)
Timofte, R., Rothe, R., Van Gool, L.: Seven ways to improve example-based single image super resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1865–1873 (2016)
Uhm, K.H., Kim, S.W., Ji, S.W., Cho, S.J., Hong, J.P., Ko, S.J.: W-Net: twostage U-Net with misaligned data for raw-to-RGB mapping. In: Proceedings of the IEEE International Conference on Computer Vision Workshop, pp. 3636–3642. IEEE (2019)
Vedaldi, A., Fulkerson, B.: VLFeat: an open and portable library of computer vision algorithms. In: Proceedings of the 18th ACM International Conference on Multimedia, pp. 1469–1472 (2010)
Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)
Wang, X., Chan, K.C., Yu, K., Dong, C., Change Loy, C.: EDVR: video restoration with enhanced deformable convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)
Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, vol. 2, pp. 1398–1402. IEEE (2003)
Xu, X., Ma, Y., Sun, W.: Towards real scene super-resolution with raw images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1723–1731 (2019)
Yuan, L., Sun, J.: Automatic exposure correction of consumer photographs. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 771–785. Springer, Heidelberg (2012). https://doi.org/10. 1007/978-3-642-33765-9 55
Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)
Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Proceedings of the IEEE European Conference on Computer Vision. pp. 286–301 (2018)
Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2472–2481 (2018)
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)