ES为了避免深分页,不允许使用分页(from&size)查询10000条以后的数据,因此如果要查询第10000条以后的数据,要使用ES提供的 scroll(游标) 来查询
假设取的页数较大时(深分页),如请求第20页,Elasticsearch不得不取出所有分片上的第1页到第20页的所有文档,并做排序,最终再取出from后的size条结果作爲最终的返回值
假设你有16个分片,则需要在coordinate node彙总到 shards* (from+size)条记录,即需要16*(20+10)记录后做一次全局排序
所以,当索引非常非常大(千万或亿),是无法使用from + size 做深分页的,分页越深则越容易OOM,即便不OOM,也很消耗CPU和内存资源
因此ES使用index.max_result_window:10000
作爲保护措施 ,即默认 from + size 不能超过10000,虽然这个参数可以动态修改,也可以在配置文件配置,但是最好不要这麽做,应该改用ES游标来取得数据
scroll游标原理
可以把 scroll 理解爲关系型数据库里的 cursor,因此,scroll 并不适合用来做实时搜索,而更适用于后台批处理任务,比如群发
scroll 具体分爲初始化和遍历两步
初始化时将所有符合搜索条件的搜索结果缓存起来,可以想象成快照
在遍历时,从这个快照里取数据
也就是说,在初始化后对索引插入、删除、更新数据都不会影响遍历结果
游标可以增加性能的原因,是因为如果做深分页,每次搜索都必须重新排序,非常浪费,使用scroll就是一次把要用的数据都排完了,分批取出,因此比使用from+size还好
具体实例
初始化
请求
注意要在URL中的search后加上scroll=1m
,不能写在request body中,其中1m
表示这个游标要保持开启1分钟
可以指定size大小,就是每次回传几笔数据,当回传到没有数据时,仍会返回200成功,只是hits裡的hits会是空list
在初始化时除了回传_scroll_id
,也会回传前100笔(假设size=100)的数据
request body和一般搜索一样,因此可以说在初始化的过程中,除了加上scroll设置游标开启时间之外,其他的都跟一般的搜寻没有两样 (要设置查询条件,也会回传前size笔的数据)
POST 127.0.0.1:9200/my_index/_searchscroll=1m
{
“query”:{
“range”:{
“createTime”: {
“gte”: 1522229999999
}
}
},
“size”: 1000
}
返回结果
{
“_scroll_id”: “DnF1ZXJ5VGhlbkZldGNoBQAAAAAAfv5-FjNOamF0Mk1aUUhpUnU5ZWNMaHJocWcAAAAAAH7-gBYzTmphdDJNWlFIaVJ1OWVjTGhyaHFnAAAAAAB-_n8WM05qYXQyTVpRSGlSdTllY0xocmhxZwAAAAAAdsJxFmVkZTBJalJWUmp5UmI3V0FYc2lQbVEAAAAAAHbCcBZlZGUwSWpSVlJqeVJiN1dBWHNpUG1R”,
“took”: 2,
“timed_out”: false,
“_shards”: {
“total”: 5,
“successful”: 5,
“skipped”: 0,
“failed”: 0
},
“hits”: {
“total”: 84,
“max_score”: 1,
“hits”: [
{
“_index”: “video1522821719”,
“_type”: “doc”,
“_id”: “84056”,
“_score”: 1,
“_source”: {
“title”: “三个院子”,
“createTime”: 1522239744000
}
}
…99 data
]
}
}
遍历数据
请求
使用初始化返回的_scroll_id
来进行请求,每一次请求都会继续返回初始化中未读完数据,并且会返回一个_scroll_id
,这个_scroll_id
可能会改变,因此每一次请求应该带上上一次请求返回的_scroll_id
要注意返回的是_scroll_id
,但是放在请求裡的是scroll_id
,两者拼写上有不同
且每次发送scroll请求时,都要再重新刷新这个scroll的开启时间,以防不小心超时导致数据取得不完整
POST 127.0.0.1:9200/_search/scrollscroll=1m
{
“scroll_id”: “DnF1ZXJ5VGhlbkZldGNoBQAAAAAAdsMqFmVkZTBJalJWUmp5UmI3V0FYc2lQbVEAAAAAAHbDKRZlZGUwSWpSVlJqeVJiN1dBWHNpUG1RAAAAAABpX2sWclBEekhiRVpSRktHWXFudnVaQ3dIQQAAAAAAaV9qFnJQRHpIYkVaUkZLR1lxbnZ1WkN3SEEAAAAAAGlfaRZyUER6SGJFWlJGS0dZcW52dVpDd0hB”
}
返回结果
如果没有数据了,就会回传空的hits,可以用这个判断是否遍历完成了数据
{
“_scroll_id”: “DnF1ZXJ5VGhlbkZldGNoBQAAAAAAdsMqFmVkZTBJalJWUmp5UmI3V0FYc2lQbVEAAAAAAHbDKRZlZGUwSWpSVlJqeVJiN1dBWHNpUG1RAAAAAABpX2sWclBEekhiRVpSRktHWXFudnVaQ3dIQQAAAAAAaV9qFnJQRHpIYkVaUkZLR1lxbnZ1WkN3SEEAAAAAAGlfaRZyUER6SGJFWlJGS0dZcW52dVpDd0hB”,
“took”: 2,
“timed_out”: false,
“_shards”: {
“total”: 5,
“successful”: 5,
“skipped”: 0,
“failed”: 0
},
“hits”: {
“total”: 84,
“max_score”: null,
“hits”: []
}
}
优化scroll查询
在一般场景下,scroll通常用来取得需要排序过后的大笔数据,但是有时候数据之间的排序性对我们而言是没有关系的,只要所有数据都能取出来就好,这时能够对scroll进行优化
初始化
使用_doc
去sort得出来的结果,这个执行的效率最快,但是数据就不会有排序,适合用在只想取得所有数据的场景
POST 127.0.0.1:9200/my_index/_searchscroll=1m
{
“query”: {
“match_all” : {}
},
“sort”: [
“_doc”
]
}
}
清除scroll
虽然我们在设置开启scroll时,设置了一个scroll的存活时间,但是如果能够在使用完顺手关闭,可以提早释放资源,降低ES的负担
DELETE 127.0.0.1:9200/_search/scroll
{
“scroll_id”: “DnF1ZXJ5VGhlbkZldGNoBQAAAAAAdsMqFmVkZTBJalJWUmp5UmI3V0FYc2lQbVEAAAAAAHbDKRZlZGUwSWpSVlJqeVJiN1dBWHNpUG1RAAAAAABpX2sWclBEekhiRVpSRktHWXFudnVaQ3dIQQAAAAAAaV9qFnJQRHpIYkVaUkZLR1lxbnZ1WkN3SEEAAAAAAGlfaRZyUER6SGJFWlJGS0dZcW52dVpDd0hB”
}