当我们工作所在的系统处于分布式系统初期的时候,往往这时候每个服务都只部署了一个节点。
那么在这样的背景下,如果某个服务 A 需要发布一个新版本,往往会对正在运行的其它依赖服务 A 的程序产生影响。甚至,一旦服务 A 的启动预热过程耗时过长,问题会更严重,大量请求会阻塞,产生级联影响,导致整个系统卡慢。
举个夸张的例子来形容:一幢楼的下水管是从最高楼直通到最低楼的,这个时候如果你家楼下的管道口堵住了,那么所有楼上的污水就会倒灌到你家。如果这导致你家的管道口也堵住了,之后又会倒灌到楼上一层,以此类推。
然而实际生活中一旦你发现了这个问题,必然会想办法先避免影响到自己家,然后跑到楼下让他们赶紧疏通管道。此时,避免影响自己家的办法就可被称之为「熔断」。
熔断本质上是一个过载保护机制。在互联网系统中的熔断机制是指:当下游服务因访问压力过大而响应变慢或失败,上游服务为了保护自己以及系统整体的可用性,可以暂时切断对下游服务的调用。
做熔断的思路大体上就是:一个中心思想,分四步走。
一、熔断怎么做
首先,需秉持的一个中心思想是:量力而行。因为软件和人不同,没有奇迹会发生,什么样的性能撑多少流量是固定的。这是根本。
然后,这四步走分别是:
定义一个识别是否处于“不正常”状态的策略
相信软件开发经验丰富的你也知道,识别一个系统是否正常,无非是两个点。
但是,由于分布式系统被建立在一个并不是 100% 可靠的网络上,所以上述的情况总有发生,因此我们不能将偶发的瞬时异常等同于系统“不可用”(避免以偏概全)。由此我们需要引入一个「时间窗口」的概念,这个时间窗口用来“放宽”判定“不可用”的区间,也意味着多给了系统几次证明自己“可用”机会。但是,如果系统还是在这个时间窗口内达到了你定义“不可用”标准,那么我们就要“断臂求生”了。
这个标准可以有两种方式来指定。
•阈值。比如,在 10 秒内出现 100 次“无法连接”或者出现 100 次大于 5 秒的请求。
•百分比。比如,在 10 秒内有 30% 请求“无法连接”或者 30% 的请求大于 5 秒。
最终会形成这样这样的一段代码。
class="ql-align-justify" style="box-sizing: border-box; font-family: monospace; font-size: 18px; margin: 20px 0px; padding: 15px; border: 0px; background-color: rgb(244, 245, 246); white-space: pre-wrap; word-break: break-all; color: rgb(34, 34, 34); font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: justify; text-indent: 0px; text-transform: none; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-style: initial; text-decoration-color: initial;">全局变量 errorcount = 0; // 有个独立的线程每隔 10 秒(时间窗口)重置为 0。
- 全局变量 isOpenCircuitBreaker = false;
-
- //do some thing...
-
- if(success){
- return success;
- }
- else{
- errorcount++;
- if(errorcount == 不可用阈值){
- isOpenCircuitBreaker = true;
- }
- }
切断联系
切断联系要尽可能的“果断”,既然已经认定了对方“不可用”,那么索性就默认“失败”,避免做无用功,也顺带能缓解对方的压力。
分布式系统中的程序间调用,一般都会通过一些 RPC 框架进行。
那么,这个时候作为客户端一方,在自己进程内通过代理发起调用之前就可以直接返回失败,不走网络。
这就是常说的「fail fast」机制。就是在前面提到的代码段之前增加下面的这段代码。
class="ql-align-justify" style="box-sizing: border-box; font-family: monospace; font-size: 18px; margin: 20px 0px; padding: 15px; border: 0px; background-color: rgb(244, 245, 246); white-space: pre-wrap; word-break: break-all; color: rgb(34, 34, 34); font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: justify; text-indent: 0px; text-transform: none; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-style: initial; text-decoration-color: initial;">if(isOpenCircuitBreaker == true){
- return fail;
- }
-
- //do some thing...
定义一个识别是否处于“可用”状态的策略,并尝试探测
切断联系后,功能的完整性必然会受影响,所以还是需要尽快恢复回来,以提供完整的服务能力。这事肯定不能人为去干预,及时性必然会受到影响。那么如何能够自动的识别依赖系统是否“可用”呢?这也需要你来定义一个策略。
一般来说这个策略与识别“不可用”的策略类似,只是这里是一个反向指标。
•阈值。比如,在 10 秒内出现 100 次“调用成功”并且耗时都小于 1 秒。
•百分比。比如,在 10 秒内有 95% 请求“调用成功”并且 98% 的请求小于 1 秒。
同样包含「时间窗口」、「阈值」以及「百分比」。
稍微不同的地方在于,大多数情况下,一个系统“不可用”的状态往往会持续一段时间,不会那么快就恢复过来。所以我们不需要像第一步中识别“不可用”那样,无时无刻的记录请求状况,而只需要在每隔一段时间之后去进行探测即可。所以,这里多了一个「间隔时间」的概念。这个间隔幅度可以是固定的,比如 30 秒。也可以是动态增加的,通过线性增长或者指数增长等方式。
这个用代码表述大致是这样。
class="ql-align-justify" style="box-sizing: border-box; font-family: monospace; font-size: 18px; margin: 20px 0px; padding: 15px; border: 0px; background-color: rgb(244, 245, 246); white-space: pre-wrap; word-break: break-all; color: rgb(34, 34, 34); font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: justify; text-indent: 0px; text-transform: none; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-style: initial; text-decoration-color: initial;">全局变量 successCount = 0;
- // 有个独立的线程每隔 10 秒(时间窗口)重置为 0。
- // 并且将下面的 isHalfOpen 设为 false。
-
- 全局变量 isHalfOpen = true;
- // 有个独立的线程每隔 30 秒(间隔时间)重置为 true。
-
- //do some thing...
- if(success){
- if(isHalfOpen){
- successCount ++;
- if(successCount = 可用阈值){
- isOpenCircuitBreaker = false;
- }
- }
-
- return success;
- }
- else{
- errorcount++;
- if(errorcount == 不可用阈值){
- isOpenCircuitBreaker = true;
- }
- }
另外,尝试探测本质上是一个“试错”,要控制下“试错成本”。所以我们不可能拿 100% 的流量去验证,一般会有以下两种方式:
重新恢复正常
一旦通过了衡量是否“可用”的验证,整个系统就恢复到了“正常”状态,此时需要重新开启识别“不可用”的策略。就这样,系统会形成一个循环。
这就是一个完整的熔断机制的面貌。了解了这些核心思想,用什么框架去实施就变得不是那么重要了,因为大部分都是换汤不换药。
上面聊到的这些可以说是主干部分,还有一些最佳实践可以让你在实施熔断的时候拿捏的更到位。
二、做熔断的最佳实践
什么场景最适合做熔断
一个事物在不同的场景里会发挥出不同的效果。以下是我能想到最适合熔断发挥更大优势的几个场景:
•所依赖的系统本身是一个共享系统,当前客户端只是其中的一个客户端。这是因为,如果其它客户端进行胡乱调用也会影响到你的调用。
•所以依赖的系统被部署在一个共享环境中(资源未做隔离),并不独占使用。比如,和某个高负荷的数据库在同一台服务器上。
•所依赖的系统是一个经常会迭代更新的服务。这点也意味着,越“敏捷”的系统越需要“熔断”。
•当前所在的系统流量大小是不确定的。比如,一个电商网站的流量波动会很大,你能抗住突增的流量不代表所依赖的后端系统也能抗住。这点也反映出了我们在软件设计中带着“面向怀疑”的心态的重要性。
做熔断时还要注意的一些地方
与所有事物一样,熔断也不是一个完美的事物,我们特别需要注意 2 个问题。
首先,如果所依赖的系统是多副本或者做了分区的,那么要注意其中个别节点的异常并不等于所有节点都存在异常,所以需要区别对待。
其次,熔断往往应作为最后的选择,我们应优先使用一些「降级」或者「限流」方案。因为“部分胜于无”,虽然无法提供完整的服务,但尽可能的降低影响是要持续去努力的。比如,抛弃非核心业务、给出友好提示等等,这部分内容我们会在后续的文章中展开。
三、总结
本文主要聊了熔断的作用以及做法,并且总结了一些我自己的最佳实践。
上面的这些代码示例中也可以看到,熔断代码所在的位置要么在实际方法之前,要么在实际方法之后。它非常适合 AOP 编程思想的发挥,所以我们平常用到的熔断框架都会基于 AOP 去做。
熔断只是一个保护壳,在周围出现异常的时候保全自身。但是从长远来看平时定期做好压力测试才能更好的防范于未然,降低触发熔断的次数。如果清楚的知道每个系统有几斤几两,在这个基础上再把「限流」和「降级」做好,这基本就将“高压”下触发熔断的概率降到最低了。