用样本去训练一个BP网络,然后用新的样本作为输入,再通过这个已经训练好的BP网络,得到的数据就是仿真的结果,这就是BP网络仿真。
我们训练一个BP网络就好像是在训练一个神经系统,然后用这个已经具备分析能力的神经系统去分析事情,这就是为什么要仿真,说到底就是为了用。
仿真的作用你可以从BP神经网络的用途上去看,例如很经典的可以用来做分类器等。你用不同类别的样本(输入+对应的期望输出)作为训练,然后给出一个新的输入,BP网就能给你这个所属的类别。
%人脸识别模型,脸部模型自己找吧。
functionmytest()clc;images=[];M_train=3;%表示人脸N_train=5;%表示方向sample=[];pixel_value=[];sample_number=0;forj=1:N_trainfori=1:M_trainstr=strcat('Images\',num2str(i),'_',num2str(j),'.bmp');%读取图像,连接字符串形成图像的文件名。
img=imread(str);[rowscols]=size(img);%获得图像的行和列值。
img_edge=edge(img,'Sobel');%由于在分割图片中我们可以看到这个人脸的眼睛部分也就是位于分割后的第二行中,位置变化比较大,而且眼睛边缘检测效果很好sub_rows=floor(rows/6);%最接近的最小整数,分成6行sub_cols=floor(cols/8);%最接近的最小整数,分成8列sample_num=M_train*N_train;%前5个是第一幅人脸的5个角度sample_number=sample_number+1;forsubblock_i=1:8%因为这还在i,j的循环中,所以不可以用iblock_num=subblock_i;pixel_value(sample_number,block_num)=0;forii=sub_rows:(2*sub_rows)forjj=(subblock_i-1)*sub_cols+1:subblock_i*sub_colspixel_value(sample_number,block_num)=pixel_value(sample_number,block_num)+img_edge(ii,jj);endendendendend%将特征值转换为小于1的值max_pixel_value=max(pixel_value);max_pixel_value_1=max(max_pixel_value);fori=1:3mid_value=10^i;if(((max_pixel_value_1/mid_value)>1)&&((max_pixel_value_1/mid_value)。