• 万有引力的几个结论证明


    均匀球体对球体外物体的万有引力等效于位于球心处的质点

    cos ⁡ α = D − z x 2 + y 2 + ( D − z ) 2 = D − r cos ⁡ ϕ r 2 sin ⁡ 2 ϕ cos ⁡ 2 θ + r 2 sin ⁡ 2 ϕ sin ⁡ 2 θ + D 2 − 2 r D cos ⁡ ϕ + r 2 cos ⁡ 2 ϕ = D − r cos ⁡ ϕ r 2 + D 2 − 2 r D cos ⁡ ϕ

    cosα=Dzx2+y2+(Dz)2=Drcosϕr2sin2ϕcos2θ+r2sin2ϕsin2θ+D22rDcosϕ+r2cos2ϕ=Drcosϕr2+D22rDcosϕ" role="presentation" style="position: relative;">cosα=Dzx2+y2+(Dz)2=Drcosϕr2sin2ϕcos2θ+r2sin2ϕsin2θ+D22rDcosϕ+r2cos2ϕ=Drcosϕr2+D22rDcosϕ
    cosα=x2+y2+(Dz)2 Dz=r2sin2ϕcos2θ+r2sin2ϕsin2θ+D22rDcosϕ+r2cos2ϕ Drcosϕ=r2+D22rDcosϕ Drcosϕ
    F = ∭ G m ρ d V x 2 + y 2 + ( D − z ) 2 cos ⁡ α = G m ρ ∭ r 2 sin ⁡ ϕ ( D − r cos ⁡ ϕ ) ( r 2 + D 2 − 2 r D cos ⁡ ϕ ) 3 2 d V
    F=GmρdVx2+y2+(Dz)2cosα=Gmρr2sinϕ(Drcosϕ)(r2+D22rDcosϕ)32dV" role="presentation" style="position: relative;">F=GmρdVx2+y2+(Dz)2cosα=Gmρr2sinϕ(Drcosϕ)(r2+D22rDcosϕ)32dV
    F=x2+y2+(Dz)2GmρdVcosα=Gmρ(r2+D22rDcosϕ)23r2sinϕ(Drcosϕ)dV


    A ( ϕ ) = r 2 sin ⁡ ϕ ( D − r cos ⁡ ϕ ) B ( ϕ ) = r 2 + D 2 − 2 r D cos ⁡ ϕ
    A(ϕ)=r2sinϕ(Drcosϕ)B(ϕ)=r2+D22rDcosϕ" role="presentation" style="position: relative;">A(ϕ)=r2sinϕ(Drcosϕ)B(ϕ)=r2+D22rDcosϕ
    A(ϕ)B(ϕ)=r2sinϕ(Drcosϕ)=r2+D22rDcosϕ


    d B ( ϕ ) d ϕ = 2 r D sin ⁡ ϕ A ( ϕ ) = r 2 sin ⁡ ϕ ( D − r cos ⁡ ϕ ) = r ( D − r cos ⁡ ϕ ) 2 D d B ( ϕ ) d ϕ = r ( B ( ϕ ) + D 2 − r 2 ) 4 D 2 d B ( ϕ ) d ϕ
    dB(ϕ)dϕ=2rDsinϕA(ϕ)=r2sinϕ(Drcosϕ)=r(Drcosϕ)2DdB(ϕ)dϕ=r(B(ϕ)+D2r2)4D2dB(ϕ)dϕ" role="presentation" style="position: relative;">dB(ϕ)dϕ=2rDsinϕA(ϕ)=r2sinϕ(Drcosϕ)=r(Drcosϕ)2DdB(ϕ)dϕ=r(B(ϕ)+D2r2)4D2dB(ϕ)dϕ
    dϕdB(ϕ)A(ϕ)=2rDsinϕ=r2sinϕ(Drcosϕ)=2Dr(Drcosϕ)dϕdB(ϕ)=4D2r(B(ϕ)+D2r2)dϕdB(ϕ)

    于是
    ∫ B ( ϕ ) + D 2 − r 2 B 3 2 ( ϕ ) d B ( ϕ ) = − 2 ∫ ( B ( ϕ ) + D 2 − r 2 ) d B − 1 2 ( ϕ ) = − 2 [ B ( ϕ ) + D 2 − r 2 B ( ϕ ) ] + 2 ∫ B − 1 2 ( ϕ ) d B ( ϕ ) = − 2 [ B ( ϕ ) + D 2 − r 2 B ( ϕ ) ] + 4 B ( ϕ ) = 2 B ( ϕ ) − 2 D 2 − r 2 B ( ϕ )
    B(ϕ)+D2r2B32(ϕ)dB(ϕ)=2(B(ϕ)+D2r2)dB12(ϕ)=2[B(ϕ)+D2r2B(ϕ)]+2B12(ϕ)dB(ϕ)=2[B(ϕ)+D2r2B(ϕ)]+4B(ϕ)=2B(ϕ)2D2r2B(ϕ)" role="presentation" style="position: relative;">B(ϕ)+D2r2B32(ϕ)dB(ϕ)=2(B(ϕ)+D2r2)dB12(ϕ)=2[B(ϕ)+D2r2B(ϕ)]+2B12(ϕ)dB(ϕ)=2[B(ϕ)+D2r2B(ϕ)]+4B(ϕ)=2B(ϕ)2D2r2B(ϕ)
    ====B23(ϕ)B(ϕ)+D2r2dB(ϕ)2(B(ϕ)+D2r2)dB21(ϕ)2[B(ϕ) +B(ϕ) D2r2]+2B21(ϕ)dB(ϕ)2[B(ϕ) +B(ϕ) D2r2]+4B(ϕ) 2B(ϕ) 2B(ϕ) D2r2

    加入上下限
    B ( 0 ) = r 2 + D 2 − 2 r D = D − r B ( π ) = r 2 + D 2 + 2 r D = D + r ∫ 0 π B ( ϕ ) + D 2 − r 2 B 3 2 ( ϕ ) d B ( ϕ ) = 2 [ B ( ϕ ) − D 2 − r 2 B ( ϕ ) ] 0 π = 2 [ ( D + r ) − ( D − r ) ] − 2 [ ( D − r ) − ( D + r ) ] = 8 r
    B(0)=r2+D22rD=DrB(π)=r2+D2+2rD=D+r0πB(ϕ)+D2r2B32(ϕ)dB(ϕ)=2[B(ϕ)D2r2B(ϕ)]0π=2[(D+r)(Dr)]2[(Dr)(D+r)]=8r" role="presentation" style="position: relative;">B(0)=r2+D22rD=DrB(π)=r2+D2+2rD=D+r0πB(ϕ)+D2r2B32(ϕ)dB(ϕ)=2[B(ϕ)D2r2B(ϕ)]0π=2[(D+r)(Dr)]2[(Dr)(D+r)]=8r
    B(0) =B(π) =0πB23(ϕ)B(ϕ)+D2r2dB(ϕ)===r2+D22rD =Drr2+D2+2rD =D+r2[B(ϕ) B(ϕ) D2r2]0π2[(D+r)(Dr)]2[(Dr)(D+r)]8r

    代入 F F F
    F = G m ρ ∭ r 2 sin ⁡ ϕ ( D − r cos ⁡ ϕ ) ( r 2 + D 2 − 2 r D cos ⁡ ϕ ) 3 2 d V = G m ρ ∫ 0 2 π ∫ 0 π ∫ 0 R r 2 sin ⁡ ϕ ( D − r cos ⁡ ϕ ) ( r 2 + D 2 − 2 r D cos ⁡ ϕ ) 3 2 d r d ϕ d θ = 2 π G m ρ ∫ 0 π ∫ 0 R r 2 sin ⁡ ϕ ( D − r cos ⁡ ϕ ) ( r 2 + D 2 − 2 r D cos ⁡ ϕ ) 3 2 d r d ϕ = 2 π G m ρ ∫ 0 R ∫ 0 π ∫ A ( ϕ ) B 3 2 ( ϕ ) d ϕ d r = 2 π G m ρ ∫ 0 R ∫ 0 π r ( B ( ϕ ) + D 2 − r 2 ) 4 D 2 B 3 2 ( ϕ ) d B ( ϕ ) d r = π G m ρ r 2 D 2 ∫ 0 R r ∫ 0 π B ( ϕ ) + D 2 − r 2 B 3 2 ( ϕ ) d B ( ϕ ) d r = π G m ρ 2 D 2 ∫ 0 R 8 r 2 d r = 4 π G m ρ D 2 R 3 3 = 4 π G m R 3 3 D 2 M 4 3 π R 3 = G M m D 2
    F=Gmρr2sinϕ(Drcosϕ)(r2+D22rDcosϕ)32dV=Gmρ02π0π0Rr2sinϕ(Drcosϕ)(r2+D22rDcosϕ)32drdϕdθ=2πGmρ0π0Rr2sinϕ(Drcosϕ)(r2+D22rDcosϕ)32drdϕ=2πGmρ0R0πA(ϕ)B32(ϕ)dϕdr=2πGmρ0R0πr(B(ϕ)+D2r2)4D2B32(ϕ)dB(ϕ)dr=πGmρr2D20Rr0πB(ϕ)+D2r2B32(ϕ)dB(ϕ)dr=πGmρ2D20R8r2dr=4πGmρD2R33=4πGmR33D2M43πR3=GMmD2" role="presentation" style="position: relative;">F=Gmρr2sinϕ(Drcosϕ)(r2+D22rDcosϕ)32dV=Gmρ02π0π0Rr2sinϕ(Drcosϕ)(r2+D22rDcosϕ)32drdϕdθ=2πGmρ0π0Rr2sinϕ(Drcosϕ)(r2+D22rDcosϕ)32drdϕ=2πGmρ0R0πA(ϕ)B32(ϕ)dϕdr=2πGmρ0R0πr(B(ϕ)+D2r2)4D2B32(ϕ)dB(ϕ)dr=πGmρr2D20Rr0πB(ϕ)+D2r2B32(ϕ)dB(ϕ)dr=πGmρ2D20R8r2dr=4πGmρD2R33=4πGmR33D2M43πR3=GMmD2
    F==========Gmρ(r2+D22rDcosϕ)23r2sinϕ(Drcosϕ)dVGmρ02π0π0R(r2+D22rDcosϕ)23r2sinϕ(Drcosϕ)drdϕdθ2πGmρ0π0R(r2+D22rDcosϕ)23r2sinϕ(Drcosϕ)drdϕ2πGmρ0R0πB23(ϕ)A(ϕ)dϕdr2πGmρ0R0π4D2B23(ϕ)r(B(ϕ)+D2r2)dB(ϕ)dr2D2πGmρr0Rr0πB23(ϕ)B(ϕ)+D2r2dB(ϕ)dr2D2πGmρ0R8r2drD24πGmρ3R33D24πGmR334πR3MD2GMm

    均匀球壳对球壳内任意一点的万有引力合力为0

    积分
    ∫ 0 π B ( ϕ ) + D 2 − r 2 B 3 2 ( ϕ ) d B ( ϕ ) \int_0^{\pi}\frac{B(\phi)+D^2-r^2}{B^{\frac{3}{2}}(\phi)}\text{d}B(\phi) 0πB23(ϕ)B(ϕ)+D2r2dB(ϕ)
    中,由于 D ≤ r D\le r Dr,所以 B ( 0 ) = r 2 + D 2 − 2 r D = r − D \sqrt{B(0)}=\sqrt{r^2+D^2-2rD}=r-D B(0) =r2+D22rD =rD,此时
    ∫ 0 π B ( ϕ ) + D 2 − r 2 B 3 2 ( ϕ ) d B ( ϕ ) = 2 [ B ( ϕ ) − D 2 − r 2 B ( ϕ ) ] 0 π = 2 [ ( D + r ) − ( D − r ) ] − 2 [ ( r − D ) + ( r + D ) ] = 0

    0πB(ϕ)+D2r2B32(ϕ)dB(ϕ)=2[B(ϕ)D2r2B(ϕ)]0π=2[(D+r)(Dr)]2[(rD)+(r+D)]=0" role="presentation" style="position: relative;">0πB(ϕ)+D2r2B32(ϕ)dB(ϕ)=2[B(ϕ)D2r2B(ϕ)]0π=2[(D+r)(Dr)]2[(rD)+(r+D)]=0
    0πB23(ϕ)B(ϕ)+D2r2dB(ϕ)===2[B(ϕ) B(ϕ) D2r2]0π2[(D+r)(Dr)]2[(rD)+(r+D)]0
    代入 F F F
    F = G m ρ ∫ 0 2 π ∫ 0 π ∫ R 1 R 2 r 2 sin ⁡ ϕ ( D − r cos ⁡ ϕ ) ( r 2 + D 2 − 2 r D cos ⁡ ϕ ) 3 2 d r d ϕ d θ = π G m ρ r 2 D 2 ∫ R 1 R 2 r ∫ 0 π B ( ϕ ) + D 2 − r 2 B 3 2 ( ϕ ) d B ( ϕ ) d r = 0
    F=Gmρ02π0πR1R2r2sinϕ(Drcosϕ)(r2+D22rDcosϕ)32drdϕdθ=πGmρr2D2R1R2r0πB(ϕ)+D2r2B32(ϕ)dB(ϕ)dr=0" role="presentation" style="position: relative;">F=Gmρ02π0πR1R2r2sinϕ(Drcosϕ)(r2+D22rDcosϕ)32drdϕdθ=πGmρr2D2R1R2r0πB(ϕ)+D2r2B32(ϕ)dB(ϕ)dr=0
    F===Gmρ02π0πR1R2(r2+D22rDcosϕ)23r2sinϕ(Drcosϕ)drdϕdθ2D2πGmρrR1R2r0πB23(ϕ)B(ϕ)+D2r2dB(ϕ)dr0

  • 相关阅读:
    React-嵌套路由
    MySQL日志篇,MySQL日志之binlog日志,binlog日志详解
    【无标题】
    JUC-管程
    移动Web第二天 4 空间转换 && 5 动画
    二叉树是否对称
    c++多线程
    sudo+vim+g++/gcc+makefile+进度条
    3、你真的把MPC搞懂了吗
    2024最佳steam搬砖项目,日入5000,保姆级教程,小白无脑操作
  • 原文地址:https://blog.csdn.net/qq_34288751/article/details/126247837