• 分数阶混沌系统李雅普指数和分岔图


    1、内容简介


    496-可以交流、咨询、答疑

    2、内容说明

    %1. Chen's system:
    [t, y]=FOChen([35 3 28 -7], [0.9 0.9 0.9], 100, [-9 -5 14]);
    figure
    plot3(y(:,1), y(:,2), y(:,3),'k');
    xlabel('x(t)'); ylabel('y(t)'); zlabel('z(t)'); grid;

    %2. CNN - 3 cells net:
    [t, y]=FO3CNN([1.24 1.1 1.0 4.4 3.21], [0.99 0.99 0.99], 100, [0.1 0.1 0.1]);
    figure
    plot3(y(:,1), y(:,2), y(:,3), 'k');
    xlabel('x_1(t)'); ylabel('x_2(t)'); zlabel('x_3(t)'); grid;

    %3. Arneodo's system:
    [t,y]=FOArneodo([-5.5 3.5 0.8 -1.0], [0.97 0.97 0.96], 200, [-0.2 0.5 0.2]);
    figure
    plot3(y(:,1), y(:,2), y(:,3), 'k');
    xlabel('x(t)'); ylabel('y(t)'); zlabel('z(t)'); grid;

    %4. Genesio-Tesi's system:
    [t, y]=FOGenTesi([1.1 1.1 0.45 1.0], [1 1 0.95], 200, [-0.1 0.5 0.2]);
    figure
    plot3(y(:,1), y(:,2), y(:,3),'k');
    xlabel('x(t)'); ylabel('y(t)'); zlabel('z(t)'); grid;

    %5. Lorenz's system:
    [t, y]=FOLorenz([10 28 8/3],[0.993 0.993 0.993],100,[0.1 0.1 0.1]);
    figure
    plot3(y(:,1), y(:,2), y(:,3), 'k');
    xlabel('x(t)'); ylabel('y(t)'); zlabel('z(t)'); grid;

    %6. Newton-Leipnik's system:
    [t, y]=FONewLeipnik([0.4 0.175], [0.95 0.95 0.95], 200, [0.19 0 -0.18]);
    figure
    plot3(y(:,1), y(:,2), y(:,3),'k');
    xlabel('x(t)'); ylabel('y(t)'); zlabel('z(t)'); grid;

    %7. Rossler's system:
    [t, y]=FORossler([0.5 0.2 10], [0.9 0.85 0.95], 120, [0.5 1.5 0.1]);
    figure
    plot3(y(:,1), y(:,2), y(:,3),'k');
    xlabel('x(t)'); ylabel('y(t)'); zlabel('z(t)'); grid;

    %8. Lotka-Volterra system:
    [t, y]=FOLotkaVolterra([1 1 1 1 2 3 2.7], [0.95 0.95 0.95], 200, [1 1.4 1]);
    figure
    plot3(y(:,1), y(:,2), y(:,3),'k');
    xlabel('x(t)'); ylabel('y(t)'); zlabel('z(t)'); grid;

    %9. Duffing's system:
    [t, y]=FODuffing([0.15 0.3 1], [0.9 1], 200, [0.21 0.31]);
    figure
    plot(y(:,1), y(:,2), 'k');
    xlabel('x(t)'); ylabel('y(t)'); grid;

    %10. Van der Pol's oscillator:
    [t, y]=FOvanDerPol(1, [1.2 0.8], 60, [0.2 -0.2]);
    figure
    plot(y(:,1), y(:,2), 'k');
    xlabel('y_1(t)'); ylabel('y_2(t)'); grid;

    %11. Volta's system:
    [t, y]=FOVolta([19 11 0.73],[0.99 0.99 0.99], 20, [8 2 1]);
    figure
    plot3(y(:,1), y(:,2), y(:,3),'k');
    xlabel('x(t)'); ylabel('y(t)'); zlabel('z(t)'); grid;

    %12. Lu's system:
    [t, y]=FOLu([36 3 20], [0.985 0.99 0.98], 60, [0.2 0.5 0.3]);
    figure
    plot3(y(:,1), y(:,2), y(:,3),'k');
    xlabel('x(t)'); ylabel('y(t)'); zlabel('z(t)'); grid;

    %13. Liu's system:
    [t, y]=FOLiu([1 2.5 5 1 4 4], [0.95 0.95 0.95], 100, [0.2 0 0.5]);
    figure
    plot3(y(:,1), y(:,2), y(:,3),'k');
    xlabel('x(t)'); ylabel('y(t)'); zlabel('z(t)'); grid;

    %14. Chua's systems:
    [t, y]=FOChuaNR([10.725 10.593 0.268 -0.7872 -1.1726], [0.93 0.99 0.92], 60, [0.6 0.1 -0.6]);
    figure
    plot3(y(:,1), y(:,2), y(:,3),'k');
    xlabel('x(t)'); ylabel('y(t)'); zlabel('z(t)'); grid;
    [t, y]=FOChuaM([10 13 0.1 1.5 0.3 0.8], [0.97 0.97 0.97 0.97], 200, [0.8 0.05 0.007 0.6]);
    figure
    plot3(y(:,1), y(:,2), y(:,3),'k');
    xlabel('x(t)'); ylabel('y(t)'); zlabel('z(t)'); grid;
    figure
    plot3(y(:,4), y(:,1), y(:,2),'k');
    xlabel('w(t)'); ylabel('x(t)'); zlabel('y(t)'); grid;

    %15. Financial system:
    [t, y]=FOFinanc([1 0.1 1],[1 0.95 0.99],200, [2 -1 1]);
    figure
    plot3(y(:,1), y(:,2), y(:,3),'k');
    xlabel('x(t)'); ylabel('y(t)'); zlabel('z(t)'); grid;


    3、仿真分析

     

     

     

     

     


    4、参考论文

  • 相关阅读:
    线性回归详解(代码实现+理论证明)
    高校教务系统登录页面JS分析——华南农业大学
    【freertos】012-事件标志概念和实现细节
    深度学习论文笔记(一)Deep Residual Learning for Image Recognition
    【MySQL】 Java的JDBC编程
    【JS面试题】面试官问我:遍历一个数组用 for 和 forEach 哪个更快?
    第35章_瑞萨MCU零基础入门系列教程之ADXL345三轴传感器驱动实验
    [附源码]计算机毕业设计springboot基于Web的软考题库平台
    设计模式-策略模式
    【C++】list的使用(上)
  • 原文地址:https://blog.csdn.net/qingfengxd1/article/details/126245476