参考书目:《深入浅出Pandas:利用Python进行数据处理与分析》
pandas对大数据有很多便捷的清洗用法,尤其针对缺失值和重复值。缺失值就不用说了,会影响计算,重复值有时候可能并未带来新的信息反而增加了计算量,所以有时候要进行处理。针对一些文本数据可能不合要求的还要进行替换什么的。
首先导入包
- import numpy as np
- import pandas as pd
'''一般使用特殊类型 NaN 代表缺失值,可以用 Numpy 可定义它np.NaN/np.nan。在 Pandas 1.0 以后实验性地使用一个标量 pd.NA 来代表。
如果想把正负无穷也为认是缺失值,可以通过以下全局配置来设定:'''
pandas.options.mode.use_inf_as_na = True
- #以下数据 NaN 为缺失值:
- df=(pd.DataFrame(np.random.randn(5, 3),index=['a', 'c', 'e', 'f', 'h'], columns=['one', 'two', 'three'])
- .reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']))
- df
#可以判断是否缺失值,DataFrame 和 Series 一般都支持。:
- # 不是缺失值
- df.one.notna()
df.isna() # 是缺失值
df[df.one.notna()]# 进行筛选
#需要注意的是,Numpy 中 np.nan 和 np.nan 不相等,因此不能用 ==/!= 进行对比:
- None == None # noqa: E711 # True
- np.nan == np.nan # False
- None == np.nan # False
其他方法
- df.notna()
- df['team'].isna()
- df['team'].isnull()
- df.isnull().sum()#计算每列缺失值个数
- df.isnull().sum(1)#计算每行缺失值个数
- df.isnull().sum().sum()#总共缺失值个数
- df.loc[df.isna().any(1)]# 有缺失值的行
- df.loc[:,df.isna().any()] # 有缺失值的列
- df.loc[~(df.isna().any(1))] # 没有缺失值的行
- df.loc[:,~(df.isna().any())] # 没有缺失值的列
#时间中的缺失值
#对于时间中的缺失值,Pandas 提供了一个 NaT 来表示,并且 NaT 和 NaN 之间是兼容的:
- df['timestamp'] = pd.Timestamp('20120101')
- df.loc[['a', 'c', 'h'], ['one', 'timestamp']] = np.nan
- df.timestamp
#整型中的缺失值,由于 NaN 是浮点型,因此一列甚至缺少一个整数的整数列都将转换为浮点。
pd.Series([1, 2, np.nan, 4], dtype=pd.Int64Dtype())
#可以使用 None 等方法将内容修改为缺失值:
- s.loc[0] = None
- s.loc[1] = np.nan
- df.two = pd.NA
首先生成案例数据
- df = pd.DataFrame([[np.nan, 2, np.nan, 0],
- [3, 4, np.nan, 1],
- [np.nan, np.nan, np.nan, 5],
- [np.nan, 3, np.nan, 4]],
- columns=list('ABCD'))
- df
#fillna(x) 可以将缺失值填充指定的值。以下为几种常见的填充方法:
- df.fillna(0)# 填充为 0
- # 填充为指定字符
- df.fillna('missing')
- df.fillna('暂无')
- df.fillna('待补充')
-
- df.one.fillna('暂无') # 指定字段填充
- df.one.fillna(0, inplace=Ture) # 使填充内容生效
- df.fillna(0, limit=1) # 只替换第一个
- values = {'A': 0, 'B': 1, 'C': 2, 'D': 3} # 不同列替换不同的值
- df.fillna(value=values)
不指定值,使用一定的方法。
# 使用 method{‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default None
- #
- df.fillna(method='backfill')# 使用上一个有效值填充
- df.fillna(method='bfill')# 同 backfill
- df.fillna(method='pad')# 把当前值广播到后边的缺失值
- df.fillna(method='ffill')# 同 pad
- #fillna(method='ffill') 可以简写为 ffill() , fillna(method='bfill') 可以简写为 bfill()
使用计算值填充
- # 填充列的平均值
- df.fillna(df.mean())
- # 对指定列填充平均值
- df.fillna(df.mean()['B':'C'])
- # 填充列的平均值,另外一个方法
- df.where(pd.notna(df), df.mean(), axis='columns')
-
- #特别的计算:
- # 第一个非空值
- df.fillna(method='bfill').head(1).iloc[0]
- # 第一个非空值索引
- df.notna().idxmax()
- df.apply(pd.Series.first_valid_index)
#插值方式,以下是一个非常简单的示例,其中一个值是缺失的,我们对它进行差值:
- s = pd.Series([0, 1,4,9, np.nan, 25])
- s.interpolate()
9和25之间的中间点为17,就把缺失值补为了17,这是线性插值。
s.interpolate(method='spline',order=2)
这是二级多项式插值。用X^2这个函数去插值的,
interpolate() 的具体参数
'''默认linear 方法,会认为是一条直线。
计算方法
默认 method=‘linear’ 如果你的数据增长速率越来越快,可以选择 method='quadratic' 二次插值。如果数据集呈现出累计分布的样子,
推荐选择 method='pchip'。如果需要填补缺省值,以平滑绘图为目标,推荐选择 method='akima'。method='akima' 和 method = ‘pchip’,
需要你的环境中安装了 Scipy 库。除此之外,method='barycentric' 和 method='pchip' 同样也需要 Scipy 才能使用。
使用插值方法,可为:
linear:线性,忽略索引,并将值等距地对待,这是MultiIndexes支持的唯一方法
time:时间,以插值给定的时间间隔长度处理每日或更高粒度的数据
index, values:索引,值,使用索引的实际数值
pad:使用现有值填写NaN。
‘nearest’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘spline’, ‘barycentric’, ‘polynomial’:
传递给 scipy.interpolate.interp1d,这些方法使用索引的数值。 ‘polynomial’ 和 ‘spline’ 都要求您还指定一个顺序(int),
例如 df.interpolate(method='polynomial',order=5)
nearest:最近
zero:零
slinear:线性
quadratic:二次方
cubic:立方
spline:花键,样条插值
barycentric:重心插值
polynomial:多项式
‘krogh’, ‘piecewise_polynomial’, ‘spline’, ‘pchip’, ‘akima’: SciPy 类似名称的插值方法。
krogh: 克罗格插值
piecewise_polynomial: 分段多项式
spline: 样条插值
pchip: 立方插值 (累计分布)
akima: 阿克玛插值 (平滑绘图)
from_derivatives:指 scipy.interpolate.BPoly.from_derivatives,它替换了 scipy 0.18 中的 piecewise_polynomial 插值方法。
其他参数
axis: 插值应用的轴方向,可选择 {0 or ‘index’, 1 or ‘columns’, None}, 默认为 None
limitint: 要填充的连续 NaN 的最大数量, 必须大于 0。
inplace: 是否将最终结果替换原数据,默认为 False
limit_direction: 限制方向,可传入 {‘forward’, ‘backward’, ‘both’}, 默认 ‘forward’,如果指定了限制,则将沿该方向填充连续的 NaN
limit_area: 限制区域,可传入 {None, ‘inside’, ‘outside’}, 默认 None,如果指定了限制,则连续的NaN将被此限制填充
None: 没有填充限制
‘inside’: 仅填充有效值包围的NaN(内插)
‘outside’: 仅将NaN填充到有效值之外(外推)
downcast: 可传入‘infer’ 或者 None, 默认是 None,如果可以向下转换 dtypes
**kwargs: 传递给插值函数的关键字参数 '''
生成案例数据
- #一般删除会针对行进行,如一行中有缺失值就会删除,当然也会有针对列的。
- df = pd.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'],
- "toy": [np.nan, 'Batmobile', 'Bullwhip'],
- "born": [pd.NaT, pd.Timestamp("1940-04-25"),
- pd.NaT]})
- df
#缺失值删除 dropna
- # 删除所有有缺失值的行(有一个缺失就删除)
- df.dropna()
- # 删除所有有缺失值的列
- df.dropna(axis='columns')
- df.dropna(axis=1)
- # 删除所有值都缺失的行
- df.dropna(how='all')
- # 不足2个非空值时删除
- df.dropna(thresh=2)
- # 指定判断缺失值的列范围
- df.dropna(subset=['name', 'born'])
- # 使删除和的结果生效
- df.dropna(inplace=True)
- # 指定列的缺失值删除
- df.toy.dropna()
重复值的寻找主要使用duplicated,语法为
df.duplicated(subset=None, keep='first')
'''可以返回表示重复行的布尔系列,可以指定列。keep参数确定要标记的重复项(如果有),选项有:
first:将除第一次出现的重复值标记为True,默认。
last:将除最后一次出现的重复值标记为True。
False:将所有重复值标记为True。'''
生成案例数据
- df = pd.DataFrame({'brand': ['Yum Yum', 'Yum Yum', 'Indomie', 'Indomie', 'Indomie'],
- 'style': ['cup', 'cup', 'cup', 'pack', 'pack'],
- 'rating': [4, 4, 3.5, 15, 5] })
- df
#默认情况下,对于每组重复的值,第一次出现都设置为False,所有其他值设置为True。
df.duplicated()
#通过使用“ last”,将每组重复值的最后一次出现设置为False,将所有其他重复值设置为True。
df.duplicated(keep='last')
#通过将keep设置为False,所有重复项都为True。
df.duplicated(keep=False)
#要在特定列上查找重复项,请使用子集。
df.duplicated(subset=['brand'])
'''删除重复值的语法为:
df.drop_duplicates(subset=None,
keep='first',
inplace=False,
ignore_index=False)
subset指定的标签或标签序列可选,仅删除某些列重复项,默认情况为使用所有列,其他有:
keep:确定要保留的重复项(如果有)
first : 保留第一次出现的重复项,默认
last : 保留最后一次出现的重复项。
False : 删除所有重复项
inplac:False,是将副本放置在适当位置还是返回副本
ignore_inde:如果为True, 则重新分配自然索引(0, 1, …, n - 1)'''
df.drop_duplicates()
#默认情况下,它将基于所有列删除重复的行。
df.drop_duplicates(subset=['brand'])
#要删除特定列上的重复项,使用子集
df.drop_duplicates(subset=['brand', 'style'], keep='last')
#删除重复项并保留最后一次出现,请使用keep。
'''语法
df.drop(labels=None,axis=0,index=None,columns=None,level=None,inplace=False,errors='raise')
labels表示要删除的行或者列,多个可以传入列表
axis表示轴方向,默认0(行)
index指定一行或多行
columns指定列
level指定多层索引
inplace立即修改 '''
df.drop([2,4])#删除指定行
- df.drop(['brand','rating'],axis=1)#删除指定列
- df.drop(columns=['brand','rating'])#同上
有时候想把数据替换为指定的值,空值缺失值都可以替换
- #指定值替换,以下是在 Series 中将 0 替换为 5:
- ser = pd.Series([0., 1., 2., 3., 4.])
- ser.replace(0, 5)
-
- #也可以批量替换:
- # 一一对应进行替换
- ser.replace([0, 1, 2, 3, 4], [4, 3, 2, 1, 0])
- # 用字典映射对应替换值
- ser.replace({0: 10, 1: 100})
- # 将 a 列的 0 b 列中的 5 替换为 100
- df.replace({'a': 0, 'b': 5}, 100)
- # 指定列里的替换规划
- df.replace({'a': {0: 100, 4: 400}})
#除了给定指定值进行替换,我们还可以指定一些替换的方法:
-
- # 将 1,2,3 替换为它们前一个值(0)
- ser.replace([1, 2, 3], method='pad') # ffill 是它同义词
- # 将 1,2,3 替换为它们后一个值(4)
- ser.replace([1, 2, 3], method='bfill')
- #如果遇到字符比较复杂的内容,就是使用正则(默认没有开启)进行匹配:
-
- # 把 bat 替换为 new
- df.replace(to_replace='bat', value='new')
- # 利用正则将 ba 开头的替换为 new
- df.replace(to_replace=r'^ba.$', value='new', regex=True)
- # 如果多列规则不一的情况下可以按以下格式对应传入
- df.replace({'A': r'^ba.$'}, {'A': 'new'}, regex=True)
- # 多个规则替换为同一个值
- df.replace(regex=[r'^ba.$', 'foo'], value='new')
- # 直接多个正则及对应的替换内容
- df.replace(regex={r'^ba.$': 'new', 'foo': 'xyz'})
替换可以处理缺失值相关的问题,如我们可以将无效的值先替换为 nan,再做缺失值处理:
生成案例数据‘
- d = {'a': list(range(4)),
- 'b': list('ab..'),
- 'c': ['a', 'b', np.nan, 'd']}
- df = pd.DataFrame(d)
- df
一些用法
- # 将.替换为 nan,(也可以替换为 None)
- df.replace('.', np.nan)
- # 使用正则,将空格和点等替换为 nan
- df.replace(r'\s*\.\s*', np.nan, regex=True)
- # 对应替换,a 换 b, 点换 nan
- df.replace(['a', '.'], ['b', np.nan])
- # 点换 dot, a 换 astuff (第一位+)
- df.replace([r'\.', r'(a)'], ['dot', r'\1stuff'], regex=True)
-
- # b 中的点要替换,替换为 b 替换规则为 nan,可以多列
- df.replace({'b': '.'}, {'b': np.nan})
- # 使用正则
- df.replace({'b': r'\s*\.\s*'}, {'b': np.nan}, regex=True)
- # b列的 b 值换为空
- df.replace({'b': {'b': r''}}, regex=True)
- # b 列的点空格等换 nan
- df.replace(regex={'b': {r'\s*\.\s*': np.nan}})
- # b列点等+ty
- df.replace({'b': r'\s*(\.)\s*'},
- {'b': r'\1ty'},regex=True)
- # 多个正则规则(a,b,. 都换为缺失)
- df.replace([r'\s*\.\s*', r'a|b'], np.nan, regex=True)
- # 用参数名传参
- df.replace(regex=[r'\s*\.\s*', r'a|b'], value=np.nan)
# 生成数据
- df = pd.DataFrame(np.random.randn(5, 2))
- df[np.random.rand(df.shape[0]) > 0.5] = 1.5
- df
- # 将 1.5 替换为 nan
- df.replace(1.5, np.nan)
- # 将1.5换为 nan, 同时于左上角的值换为 a
- df.replace([1.5, df.iloc[0, 0]], [np.nan, 'a'])
- # 使替换生效
- df.replace(1.5, np.nan, inplace=True)
#对一些极端值,如过大或者过小,可以使用 df.clip(lower, upper) 来修剪,当数据大于 upper 时,使用 upper 的值,
#小于 lower 时用 lower 的值,就像 numpy.clip 方法一样。
- df = pd.DataFrame({'a': [-1, 2, 5], 'b': [6, 1, -3]})
- df
# 修剪成最大为3最小为0
df.clip(0,3)
用来处理数据里面的异常值什么的还是很方便的。