• 【图像分割】基于粒子群、文化、进化策略算法实现化石图像分割附matlab代码


    1 内容介绍

    Start

    Loading Image

    Training Using Evolution Strategy Algorithm (Input: Raw Image and Target Histogram Vector)

    Goal: To Adjusting the Intensity by Equalizing the Image Histogram

    Initialize the Population Size N and Number of Generations

    While (number of generations is not reached)

    Recombination of Attributes and Variances of Individuals

    Mutation of Attributes and Variances

    Evaluation of Fitness Function for Individuals

    Selection for New and Best Individuals (Best Target Histogram Value)

    End While

    Apply Best Selected Target Histogram Vector

    End of ES

    Output: Evolutionary Intensity Adjusted of Target Histogram for Raw Input Image

    Training Using Cultural Algorithm (Input: ES Equalized Histogram Image and Threshold Levels Vector)

    Goal: To Quantize the Image by Fitting Threshold Level

    Initialize the Population Size N and Number of Generations

    While (number of generations is not reached)

    Fitness Evaluation

    Updating Belief Space

    Reproduction Operators

    Influence and Acceptance Functions

    Selecting Best Individuals (Best Threshold Value)

    End While

    Apply Best Selected Threshold Level Vector

    End of CA

    Output: Evolutionary Fitted Threshold Level for Input Image

    Training Using Simulated Annealing Algorithm (Input: Quantized Image and Filter Matrix)

    Goal: To Select Best Edge Filters

    Initialize the Population Size N and Number of Generations

    While (number of generations is not reached)

    Objective Function Evaluation

    If Objective Function Decreases

    Update the Best Solution for Each Filter Vector

    Reduce the Current Temperature

    Generate a New Trial Solution and Go to Evaluation Step

    Else If Metropolis Criterion Is Meet

    Go to Update Step

    Else

    Go to Reduce Temperature Step

    End While

    Apply Best Selected Edge Filter

    End of SA

    Output: Evolutionary Edge Detected Image

    Training Using Particle Swarm Optimization + SA (Input: Edge Detected Input Image)

    Goal: To Segment the Input Image

    Initialize the Population Size N and Number of Generations

    While (number of generations is not reached)

    Initialized Particles with Random Position and Velocity for PSO

    Evaluate the Fitness of Particles for each Pixel and Their Corresponding Distance for PSO

    Objective Function Evaluation for SA as Optimizer

    Find and update pbest and gbest for PSO

    Reduce The Current Temperature for SA

    Calculate and Update Velocity and Position for PSO

    Generate a New Trial Solution and Go to Evaluation Step for SA

    Show gbest the Optimal Solution for PSO

    Desirable Temperature Reached for SA

    Update the Best Solution Found for Pixel and Distance by PSO+SA

    End While

    Apply Best Clusters Found on Image to Segment

    End of PSOSA

    Overlay All Evolutionary Techniques

    Output: Evolutionary Segmented Image

    End​

    2 仿真代码

    function Culture = AdjustCulture(Culture, spop)

    n = numel(spop);

    nVar = numel(spop(1).Position);

    for i = 1:n

    if spop(i).Cost

    Culture.Situational = spop(i);

    end

    for j = 1:nVar

    if spop(i).Position(j)

    || spop(i).Cost

    Culture.Normative.Min(j) = spop(i).Position(j);

    Culture.Normative.L(j) = spop(i).Cost;

    end

    if spop(i).Position(j)>Culture.Normative.Max(j) ...

    || spop(i).Cost

    Culture.Normative.Max(j) = spop(i).Position(j);

    Culture.Normative.U(j) = spop(i).Cost;

    end

    end

    end

    Culture.Normative.Size = Culture.Normative.Max-Culture.Normative.Min; 

    end

    3 运行结果

    4 参考文献

    [1]余胜威. 基于FODPSO算法的图像分割及DSP实现[D]. 西南交通大学, 2016.

    [2]王建宾. 基于粒子群优化絮体图像分割算法的设计和应用[D]. 华东交通大学.

    Mousavi, S. M. H. (2022). Bio-Inspired Fossil Image Segmentation for %% Paleontology. International Journal of Mechatronics, Electrical and %% Computer Technology (IJMEC), 12(45), 5243-5249.

    博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

    部分理论引用网络文献,若有侵权联系博主删除。

  • 相关阅读:
    「PAT乙级真题解析」Basic Level 1077 互评成绩计算 (问题分析+完整步骤+伪代码描述+提交通过代码)
    Elasticsearch模拟网络丢包
    在idea中配置tomcat服务器,然后部署一个项日
    太强了吧,架构师联手总结17w字的计算机基础知识与操作系统PDF
    深度学习知识点
    世界坐标系,相机坐标系,像素坐标系转换 详细说明(附代码)
    寒假训练——第四周(筛法)
    阿里六脉神剑的一些感悟【分享】
    什么是组织孤岛?它会带来哪些影响?可以这样去对付它
    设计模式(14)备忘录模式
  • 原文地址:https://blog.csdn.net/qq_59747472/article/details/126216498