现在互联网应用已经普及,数据量不断增大。对BAT等互联网业务来说,传统单实例数据库很难支撑其性能和存储的要求,所以数据库拆分势在必行。
同时数据库分库后,又面临跨库关联查询、分布式事务等问题,如何解决?
避免使用烟囱式的微服务数据库设计,当商品表变更时,需要更改多个微服务,维护成本高。
应采用小而专的微服务数据库设计,各个微服务管理各自的数据表,其他微服务需要读取时,应访问对应的微服务接口。
按照业务纵向拆分数据库后,将面临跨库表关联查询问题和分布式事务问题,如何解决呢?
如上图,查询订单表时,需要返回客户信息,如何处理呢?
查询订单时,需要通过客户姓名进行条件查询,如何处理呢?
查询订单时,需要通过客户表中全部字段进行条件查询,如何处理呢?
方案简介
二阶段提交协议(Two-phase Commit,即 2PC)是常用的分布式事务解决方案,即将事务的提交过程分为两个阶段来进行处理:准备阶段和提交阶段。事务的发起者称协调者,事务的执行者称参与者。
在分布式系统里,每个节点都可以知晓自己操作的成功或者失败,却无法知道其他节点操作的成功或失败。
当一个事务跨多个节点时,为了保持事务的原子性与一致性,而引入一个协调者来统一掌控所有参与者的操作结果,并指示它们是否要把操作结果进行真正的提交或者回滚(rollback)。
二阶段提交的算法思路可以概括为:参与者将操作成败通知协调者,再由协调者根据所有参与者的反馈情报决定各参与者是否要提交操作还是中止操作。
核心思想就是对每一个事务都采用先尝试后提交的处理方式,处理后所有的读操作都要能获得最新的数据,因此也可以将二阶段提交看作是一个强一致性算法。
处理流程
简单一点理解,可以把协调者节点比喻为带头大哥,参与者理解比喻为跟班小弟,带头大哥统一协调跟班小弟的任务执行。
阶段 1:准备阶段
准备阶段有如下三个步骤:
阶段 2:提交阶段
如果协调者收到了参与者的失败消息或者超时,直接给每个参与者发送回滚(rollback)消息;否则,发送提交(commit)消息。
参与者根据协调者的指令执行提交或者回滚操作,释放所有事务处理过程中使用的锁资源。(注意:必须在最后阶段释放锁资源) 接下来分两种情况分别讨论提交阶段的过程。
情况 1,当所有参与者均反馈 yes,提交事务,如上图:
情况 2,当任何阶段 1 一个参与者反馈 no,中断事务,如上图:
方案总结
2PC 方案实现起来简单,实际项目中使用比较少,主要因为以下问题:
方案简介
三阶段提交协议,是二阶段提交协议的改进版本,与二阶段提交不同的是,引入超时机制。同时在协调者和参与者中都引入超时机制。
三阶段提交将二阶段的准备阶段拆分为 2 个阶段,插入了一个 preCommit 阶段,使得原先在二阶段提交中,参与者在准备之后,由于协调者发生崩溃或错误,而导致参与者处于无法知晓是否提交或者中止的“不确定状态”所产生的可能相当长的延时的问题得以解决。
处理流程
阶段 1:canCommit
协调者向参与者发送 commit 请求,参与者如果可以提交就返回 yes 响应(参与者不执行事务操作),否则返回 no 响应:
阶段 2:preCommit
协调者根据阶段 1 canCommit 参与者的反应情况来决定是否可以进行基于事务的 preCommit 操作。根据响应情况,有以下两种可能。
情况 1:阶段 1 所有参与者均反馈 yes,参与者预执行事务,如上图:
情况 2:阶段 1 任何一个参与者反馈 no,或者等待超时后协调者尚无法收到所有参与者的反馈,即中断事务,如上图:
阶段 3:do Commit
该阶段进行真正的事务提交,也可以分为以下两种情况。
情况 1:阶段 2 所有参与者均反馈 ack 响应,执行真正的事务提交,如上图:
情况 2:阶段 2 任何一个参与者反馈 no,或者等待超时后协调者尚无法收到所有参与者的反馈,即中断事务,如上图:
注意:进入阶段 3 后,无论协调者出现问题,或者协调者与参与者网络出现问题,都会导致参与者无法接收到协调者发出的 do Commit 请求或 abort 请求。此时,参与者都会在等待超时之后,继续执行事务提交。
方案总结
优点:相比二阶段提交,三阶段提交降低了阻塞范围,在等待超时后协调者或参与者会中断事务。避免了协调者单点问题,阶段 3 中协调者出现问题时,参与者会继续提交事务。
缺点:数据不一致问题依然存在,当在参与者收到 preCommit 请求后等待 do commite 指令时,此时如果协调者请求中断事务,而协调者无法与参与者正常通信,会导致参与者继续提交事务,造成数据不一致。
方案简介
TCC(Try-Confirm-Cancel)的概念,最早是由 Pat Helland 于 2007 年发表的一篇名为《Life beyond Distributed Transactions:an Apostate’s Opinion》的论文提出。
TCC 是服务化的二阶段编程模型,其 Try、Confirm、Cancel 3 个方法均由业务编码实现:
处理流程
为了方便理解,下面以电商下单为例进行方案解析,这里把整个过程简单分为扣减库存,订单创建 2 个步骤,库存服务和订单服务分别在不同的服务器节点上。
①Try 阶段
从执行阶段来看,与传统事务机制中业务逻辑相同。但从业务角度来看,却不一样。
TCC 机制中的 Try 仅是一个初步操作,它和后续的确认一起才能真正构成一个完整的业务逻辑,这个阶段主要完成:
因此,Try 阶段中的操作,其保障性是最好的,即使失败,仍然有取消操作(Cancel)可以将其执行结果撤销。
假设商品库存为 100,购买数量为 2,这里检查和更新库存的同时,冻结用户购买数量的库存,同时创建订单,订单状态为待确认。
②Confirm / Cancel 阶段
根据 Try 阶段服务是否全部正常执行,继续执行确认操作(Confirm)或取消操作(Cancel)。
Confirm 和 Cancel 操作满足幂等性,如果 Confirm 或 Cancel 操作执行失败,将会不断重试直到执行完成。
Confirm:当 Try 阶段服务全部正常执行, 执行确认业务逻辑操作
这里使用的资源一定是 Try 阶段预留的业务资源。在 TCC 事务机制中认为,如果在 Try 阶段能正常的预留资源,那 Confirm 一定能完整正确的提交。
Confirm 阶段也可以看成是对 Try 阶段的一个补充,Try+Confirm 一起组成了一个完整的业务逻辑。
Cancel:当 Try 阶段存在服务执行失败, 进入 Cancel 阶段
Cancel 取消执行,释放 Try 阶段预留的业务资源,上面的例子中,Cancel 操作会把冻结的库存释放,并更新订单状态为取消。
方案总结
TCC 事务机制相对于传统事务机制(X/Open XA),TCC 事务机制相比于上面介绍的 XA 事务机制,有以下优点:
缺点:
TCC 的 Try、Confirm 和 Cancel 操作功能要按具体业务来实现,业务耦合度较高,提高了开发成本。
方案简介
本地消息表的方案最初是由 eBay 提出,核心思路是将分布式事务拆分成本地事务进行处理。
方案通过在事务主动发起方额外新建事务消息表,事务发起方处理业务和记录事务消息在本地事务中完成,轮询事务消息表的数据发送事务消息,事务被动方基于消息中间件消费事务消息表中的事务。
这样设计可以避免”业务处理成功 + 事务消息发送失败",或"业务处理失败 + 事务消息发送成功"的棘手情况出现,保证 2 个系统事务的数据一致性。
处理流程
下面把分布式事务最先开始处理的事务方称为事务主动方,在事务主动方之后处理的业务内的其他事务称为事务被动方。
为了方便理解,下面继续以电商下单为例进行方案解析,这里把整个过程简单分为扣减库存,订单创建 2 个步骤。
库存服务和订单服务分别在不同的服务器节点上,其中库存服务是事务主动方,订单服务是事务被动方。
事务的主动方需要额外新建事务消息表,用于记录分布式事务的消息的发生、处理状态。
整个业务处理流程如下:
步骤1:事务主动方处理本地事务。
事务主动方在本地事务中处理业务更新操作和写消息表操作。上面例子中库存服务阶段在本地事务中完成扣减库存和写消息表(图中 1、2)。
步骤 2:事务主动方通过消息中间件,通知事务被动方处理事务通知事务待消息。
消息中间件可以基于 Kafka、RocketMQ 消息队列,事务主动方主动写消息到消息队列,事务消费方消费并处理消息队列中的消息。
上面例子中,库存服务把事务待处理消息写到消息中间件,订单服务消费消息中间件的消息,完成新增订单(图中 3 - 5)。
步骤 3:事务被动方通过消息中间件,通知事务主动方事务已处理的消息。
上面例子中,订单服务把事务已处理消息写到消息中间件,库存服务消费中间件的消息,并将事务消息的状态更新为已完成(图中 6 - 8)。
为了数据的一致性,当处理错误需要重试,事务发送方和事务接收方相关业务处理需要支持幂等。
具体保存一致性的容错处理如下:
方案总结
方案的优点如下:
缺点如下:
方案简介
基于 MQ 的分布式事务方案其实是对本地消息表的封装,将本地消息表基于 MQ 内部,其他方面的协议基本与本地消息表一致。
处理流程
下面主要基于 RocketMQ 4.3 之后的版本介绍 MQ 的分布式事务方案。
在本地消息表方案中,保证事务主动方发写业务表数据和写消息表数据的一致性是基于数据库事务,RocketMQ 的事务消息相对于普通 MQ,相对于提供了 2PC 的提交接口,方案如下:
正常情况:事务主动方发消息
这种情况下,事务主动方服务正常,没有发生故障,发消息流程如下:
在断网或者应用重启等异常情况下,图中 4 提交的二次确认超时未到达 MQ Server,此时处理逻辑如下:
事务主动方基于 MQ 通信通知事务被动方处理事务,事务被动方基于 MQ 返回处理结果。
如果事务被动方消费消息异常,需要不断重试,业务处理逻辑需要保证幂等。
如果是事务被动方业务上的处理失败,可以通过 MQ 通知事务主动方进行补偿或者事务回滚。
方案总结
相比本地消息表方案,MQ 事务方案优点是:
缺点: