• 11-Dubbo架构设计与底层原理-集群容错之 LoadBalance


    集群容错之 LoadBalance

    LoadBalance 负载均衡,它的职责是将网络请求,或者其他形式的负载“均摊”到不同的机器上。避免集群中部分服务器压力过大,而另一些服务器比较空闲的情况。通过负载均衡,可以让每台服务器获取到适合自己处理能力的负载。在为高负载的服务器分流的同时,还可以避免资源浪费,一举两得。负载均衡可分为软件负载均衡和硬件负载均衡。在我们日常开发中,一般很难接触到硬件负载均衡。但软件负载均衡还是能够接触到一些的,比如 Nginx。在 Dubbo 中,也有负载均衡的概念和相应的实现。Dubbo 需要对服务消费者的调用请求进行分配,避免少数服务提供者负载过大。服务提供者负载过大,会导致部分服务调用超时。因此将负载均衡到每个服务提供者上,是非常必要的。Dubbo 提供了4种负载均衡实现,分别是基于权重随机算法的 RandomLoadBalance、基于最少活跃调用数算法的 LeastActiveLoadBalance、基于 hash 一致性的 ConsistentHashLoadBalance,以及基于加权轮询算法的 RoundRobinLoadBalance。

    Dubbo 中,所有负载均衡实现类均继承自 AbstractLoadBalance,该类实现了 LoadBalance 接口方法,并封装了一些公共的逻辑。所以在分析负载均衡实现之前,先来看一下 AbstractLoadBalance 的逻辑。首先来看一下负载均衡的入口方法 select,如下:

    @Override
    public <T> Invoker<T> select(List<Invoker<T>> invokers, URL url, Invocation invocation) {
        if (invokers == null || invokers.isEmpty())
            return null;
        // 如果 invokers 列表中仅有一个 Invoker,直接返回即可,无需进行负载均衡
        if (invokers.size() == 1)
            return invokers.get(0);
        
        // 调用 doSelect 方法进行负载均衡,该方法为抽象方法,由子类实现
        return doSelect(invokers, url, invocation);
    }
    
    protected abstract <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation);
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13

    select 方法的逻辑比较简单,首先会检测 invokers 集合的合法性,然后再检测 invokers 集合元素数量。如果只包含一个 Invoker,直接返回该 Inovker 即可。如果包含多个 Invoker,此时需要通过负载均衡算法选择一个 Invoker。

    AbstractLoadBalance 除了实现了 LoadBalance 接口方法,还封装了一些公共逻辑 —— 服务提供者权重计算逻辑。

    protected int getWeight(Invoker<?> invoker, Invocation invocation) {
        // 从 url 中获取 weight 配置值
        int weight = invoker.getUrl().getMethodParameter(invocation.getMethodName(), 
                                Constants.WEIGHT_KEY, Constants.DEFAULT_WEIGHT);
        if (weight > 0) {
            // 获取服务提供者启动时间戳
            long timestamp = invoker.getUrl().getParameter(Constants.REMOTE_TIMESTAMP_KEY, 
                                                           0L);
            if (timestamp > 0L) {
                // 计算服务提供者运行时长
                int uptime = (int) (System.currentTimeMillis() - timestamp);
                // 获取服务预热时间,默认为10分钟
                int warmup = invoker.getUrl().getParameter(Constants.WARMUP_KEY, 
                                                           Constants.DEFAULT_WARMUP);
                // 如果服务运行时间小于预热时间,则重新计算服务权重,即降权
                if (uptime > 0 && uptime < warmup) {
                    // 重新计算服务权重
                    weight = calculateWarmupWeight(uptime, warmup, weight);
                }
            }
        }
        return weight;
    }
    
    static int calculateWarmupWeight(int uptime, int warmup, int weight) {
        // 计算权重,下面代码逻辑上形似于 (uptime / warmup) * weight。
        // 随着服务运行时间 uptime 增大,权重计算值 ww 会慢慢接近配置值 weight
        int ww = (int) ((float) uptime / ((float) warmup / (float) weight));
        return ww < 1 ? 1 : (ww > weight ? weight : ww);
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30

    上面是权重的计算过程,该过程主要用于保证当服务运行时长小于服务预热时间时,对服务进行降权,避免让服务在启动之初就处于高负载状态。服务预热是一个优化手段,与此类似的还有 JVM 预热。主要目的是让服务启动后“低功率”运行一段时间,使其效率慢慢提升至最佳状态。

    RandomLoadBalance

    RandomLoadBalance 是加权随机算法的具体实现,它的算法思想很简单。假设我们有一组服务器 servers = [A, B, C],他们对应的权重为 weights = [5, 3, 2],权重总和为10。现在把这些权重值平铺在一维坐标值上,[0, 5) 区间属于服务器 A,[5, 8) 区间属于服务器 B,[8, 10) 区间属于服务器 C。接下来通过随机数生成器生成一个范围在 [0, 10) 之间的随机数,然后计算这个随机数会落到哪个区间上。比如数字3会落到服务器 A 对应的区间上,此时返回服务器 A 即可。权重越大的机器,在坐标轴上对应的区间范围就越大,因此随机数生成器生成的数字就会有更大的概率落到此区间内。只要随机数生成器产生的随机数分布性很好,在经过多次选择后,每个服务器被选中的次数比例接近其权重比例。比如,经过一万次选择后,服务器 A 被选中的次数大约为5000次,服务器 B 被选中的次数约为3000次,服务器 C 被选中的次数约为2000次。

    public class RandomLoadBalance extends AbstractLoadBalance {
    
        public static final String NAME = "random";
    
        private final Random random = new Random();
    
        @Override
        protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
            int length = invokers.size();
            int totalWeight = 0;
            boolean sameWeight = true;
            // 下面这个循环有两个作用,第一是计算总权重 totalWeight,
            // 第二是检测每个服务提供者的权重是否相同,若不相同,则将 sameWeight 置为 false
            for (int i = 0; i < length; i++) {
                int weight = getWeight(invokers.get(i), invocation);
                // 累加权重
                totalWeight += weight;
                // 检测当前服务提供者的权重与上一个服务提供者的权重是否相同,
                // 不相同的话,则将 sameWeight 置为 false。
                if (sameWeight && i > 0
                        && weight != getWeight(invokers.get(i - 1), invocation)) {
                    sameWeight = false;
                }
            }
            
            // 下面的 if 分支主要用于获取随机数,并计算随机数落在哪个区间上
            if (totalWeight > 0 && !sameWeight) {
                // 随机获取一个 [0, totalWeight) 之间的数字
                int offset = random.nextInt(totalWeight);
                // 循环让 offset 数减去服务提供者权重值,当 offset 小于0时,返回相应的 Invoker。
                // 还是用上面的例子进行说明,servers = [A,B,C],weights = [5,3,2],offset = 7。
                // 第一次循环,offset - 5 = 2 > 0,说明 offset 肯定不会落在服务器 A 对应的区间上。
                // 第二次循环,offset - 3 = -1 < 0,表明 offset 落在服务器 B 对应的区间上
                for (int i = 0; i < length; i++) {
                    // 让随机值 offset 减去权重值
                    offset -= getWeight(invokers.get(i), invocation);
                    if (offset < 0) {
                        // 返回相应的 Invoker
                        return invokers.get(i);
                    }
                }
            }
            
            // 如果所有服务提供者权重值相同,此时直接随机返回一个即可
            return invokers.get(random.nextInt(length));
        }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47

    RandomLoadBalance 的算法思想比较简单,在经过多次请求后,能够将调用请求按照权重值进行“均匀”分配。当然 RandomLoadBalance 也存在一定的缺点,当调用次数比较少时,Random 产生的随机数可能会比较集中,此时多数请求会落到同一台服务器上。这个缺点并不是很严重,多数情况下可以忽略。RandomLoadBalance 是一个简单,高效的负载均衡实现,因此 Dubbo 选择它作为缺省实现。

    LeastActiveLoadBalance

    LeastActiveLoadBalance 翻译过来是最小活跃数负载均衡,所谓的最小活跃数可理解为最少连接数。即服务提供者目前正在处理的请求数(一个请求对应一条连接)最少,表明该服务提供者效率高,单位时间内可处理更多的请求。此时应优先将请求分配给该服务提供者。在具体实现中,每个服务提供者对应一个活跃数 active。初始情况下,所有服务提供者活跃数均为0。每收到一个请求,活跃数加1,完成请求后则将活跃数减1。在服务运行一段时间后,性能好的服务提供者处理请求的速度更快,因此活跃数下降的也越快。此时这样的服务提供者能够优先获取到新的服务请求,这就是最小活跃数负载均衡算法的基本思想。除了最小活跃数,LeastActiveLoadBalance 在实现上还引入了权重值。所以准确的来说,LeastActiveLoadBalance 是基于加权最小活跃数算法实现的。举个例子说明一下,在一个服务提供者集群中,有两个性能优异的服务提供者。某一时刻它们的活跃数相同,此时 Dubbo 会根据它们的权重去分配请求,权重越大,获取到新请求的可能性就越大。如果两个服务提供者权重相同,此时随机选择一个即可。

    public class LeastActiveLoadBalance extends AbstractLoadBalance {
    
        public static final String NAME = "leastactive";
    
        private final Random random = new Random();
    
        @Override
        protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation 
                                          invocation) {
            int length = invokers.size();
            // 最小的活跃数
            int leastActive = -1;
            // 具有相同“最小活跃数”的服务者提供者(以下用 Invoker 代称)数量
            int leastCount = 0; 
            // leastIndexs 用于记录具有相同“最小活跃数”的 Invoker 在 invokers 列表中的下标信息
            int[] leastIndexs = new int[length];
            int totalWeight = 0;
            //第一个最小活跃数的Invoker权重值,用于与其他具有相同最小活跃数的 Invoker 的权重进行对比,
            // 以检测是否所有具有相同最小活跃数的 Invoker 的权重均相等
            int firstWeight = 0;
            boolean sameWeight = true;
    
            // 遍历 invokers 列表
            for (int i = 0; i < length; i++) {
                Invoker<T> invoker = invokers.get(i);
                // 获取 Invoker 对应的活跃数
                int active = RpcStatus.getStatus(invoker.getUrl(), 
                                                 invocation.getMethodName()).getActive();
                // 获取权重 -
                int afterWarmup = getWeight(invoker, invocation); 
                // 发现更小的活跃数,重新开始
                if (leastActive == -1 || active < leastActive) {
                	// 使用当前活跃数 active 更新最小活跃数 leastActive
                    leastActive = active;
                    // 更新 leastCount 为 1
                    leastCount = 1;
                    // 记录当前下标值到 leastIndexs 中
                    leastIndexs[0] = i;
                    totalWeight = afterWarmup;
                    firstWeight = afterWarmup;
                    sameWeight = true;
    
                // 当前 Invoker 的活跃数 active 与最小活跃数 leastActive 相同 
                } else if (active == leastActive) {
                	// 在 leastIndexs 中记录下当前 Invoker 在 invokers 集合中的下标
                    leastIndexs[leastCount++] = i;
                    // 累加权重
                    totalWeight += afterWarmup;
                    // 检测当前 Invoker 的权重与 firstWeight 是否相等,
                    // 不相等则将 sameWeight 置为 false
                    if (sameWeight && i > 0
                        && afterWarmup != firstWeight) {
                        sameWeight = false;
                    }
                }
            }
            
            // 当只有一个 Invoker 具有最小活跃数,此时直接返回该 Invoker 即可
            if (leastCount == 1) {
                return invokers.get(leastIndexs[0]);
            }
    
            // 有多个 Invoker 具有相同的最小活跃数,但他们的权重不同
            if (!sameWeight && totalWeight > 0) {
            	// 随机获取一个 [0, totalWeight)+1 之间的数字
                int offsetWeight = random.nextInt(totalWeight) + 1;
                // 循环让随机数减去具有最小活跃数的 Invoker 的权重值,
                // 当 offset 小于等于0时,返回相应的 Invoker
                for (int i = 0; i < leastCount; i++) {
                    int leastIndex = leastIndexs[i];
                    // 获取权重值,并让随机数减去权重值 
                    offsetWeight -= getWeight(invokers.get(leastIndex), invocation);
                    if (offsetWeight <= 0)
                        return invokers.get(leastIndex);
                }
            }
            // 如果权重相同或权重为0时,随机返回一个 Invoker
            return invokers.get(leastIndexs[random.nextInt(leastCount)]);
        }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80

    以上代码所做的事情,如下:

    1. 遍历 invokers 列表,寻找活跃数最小的 Invoker
    2. 如果有多个 Invoker 具有相同的最小活跃数,此时记录下这些 Invoker 在 invokers 集合中的下标,以及累加它们的权重,比较它们之间的权重值是否相等
    3. 如果只有一个 Invoker 具有最小的活跃数,此时直接返回该 Invoker 即可
    4. 如果有多个 Invoker 具有最小活跃数,且它们的权重不相等,此时处理方式和 RandomLoadBalance 一致
    5. 如果有多个 Invoker 具有最小活跃数,但它们的权重相等,此时随机返回一个即可

    ConsistentHashLoadBalance

    一致性 hash 算法由麻省理工学院的 Karger 及其合作者于1997年提供出的,算法提出之初是用于大规模缓存系统的负载均衡。它的工作过程是这样的,首先根据 ip 或者其他信息为缓存节点生成一个 hash,并将这个 hash 投射到 [0, 232 - 1] 的圆环上。当有查询或写入请求时,则为缓存项的 key 生成一个 hash 值。然后查找第一个大于或等于该 hash 值的缓存节点,并到这个节点中查询或写入缓存项。如果当前节点挂了,则在下一次查询或写入缓存时,为缓存项查找另一个大于其 hash 值的缓存节点即可。大致效果如下,每个缓存节点在圆环上占据一个位置。如果缓存项的 key 的 hash 值小于缓存节点 hash 值,则到该缓存节点中存储或读取缓存项。比如下面绿色点对应的缓存项存储到 cache-2 节点中。由于 cache-3 挂了,原本应该存到该节点中的缓存想最终会存储到 cache-4 节点中。

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-BXlCx2Zq-1659652334143)(D:\讲义\dubbo-images\image-20201216114358876.png)]

    把上图的缓存节点替换成 Dubbo 的服务提供者,于是得到了下图:

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-eGPzVlvb-1659652334144)(D:\讲义\dubbo-images\image-20201216114541652.png)]

    相同颜色的节点均属于同一个服务提供者,比如 Invoker1-1,Invoker1-2,……, Invoker1-160。这样做的目的是通过引入虚拟节点,让 Invoker 在圆环上分散开来,避免数据倾斜问题。

    public class ConsistentHashLoadBalance extends AbstractLoadBalance {
    
        private final ConcurrentMap<String, ConsistentHashSelector<?>> selectors = 
            new ConcurrentHashMap<String, ConsistentHashSelector<?>>();
    
        @Override
        protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation 
                                          invocation) {
            String methodName = RpcUtils.getMethodName(invocation);
            String key = invokers.get(0).getUrl().getServiceKey() + "." + methodName;
    
            // 获取 invokers 原始的 hashcode
            int identityHashCode = System.identityHashCode(invokers);
            ConsistentHashSelector<T> selector = (ConsistentHashSelector<T>) 
                selectors.get(key);
            // 如果invokers是一个新的List 对象,意味着服务提供者数量发生了变化,可能新增也可能减少了。
            // 此时 selector.identityHashCode != identityHashCode 条件成立
            if (selector == null || selector.identityHashCode != identityHashCode) {
                // 创建新的 ConsistentHashSelector
                selectors.put(key, new ConsistentHashSelector<T>(invokers, methodName, 
                                                                 identityHashCode));
                selector = (ConsistentHashSelector<T>) selectors.get(key);
            }
    
            // 调用 ConsistentHashSelector 的 select 方法选择 Invoker
            return selector.select(invocation);
        }
        
        private static final class ConsistentHashSelector<T> {...}
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30

    doSelect 方法主要做了一些前置工作,比如检测 invokers 列表是不是变动过,以及创建 ConsistentHashSelector。这些工作做完后,接下来开始调用 select 方法执行负载均衡逻辑。在分析 select 方法之前,先来看一下一致性 hash 选择器 ConsistentHashSelector 的初始化过程,如下:

    private static final class ConsistentHashSelector<T> {
    
        // 使用 TreeMap 存储 Invoker 虚拟节点
        private final TreeMap<Long, Invoker<T>> virtualInvokers;
    
        private final int replicaNumber;
    
        private final int identityHashCode;
    
        private final int[] argumentIndex;
    
        ConsistentHashSelector(List<Invoker<T>> invokers, String methodName, int 
                               identityHashCode) {
            this.virtualInvokers = new TreeMap<Long, Invoker<T>>();
            this.identityHashCode = identityHashCode;
            URL url = invokers.get(0).getUrl();
            // 获取虚拟节点数,默认为160
            this.replicaNumber = url.getMethodParameter(methodName, "hash.nodes", 160);
            // 获取参与 hash 计算的参数下标值,默认对第一个参数进行 hash 运算
            String[] index = Constants.COMMA_SPLIT_PATTERN.split(url.getMethodParameter
                                      (methodName, "hash.arguments", "0"));
            argumentIndex = new int[index.length];
            for (int i = 0; i < index.length; i++) {
                argumentIndex[i] = Integer.parseInt(index[i]);
            }
            for (Invoker<T> invoker : invokers) {
                String address = invoker.getUrl().getAddress();
                for (int i = 0; i < replicaNumber / 4; i++) {
                    // 对 address + i 进行 md5 运算,得到一个长度为16的字节数组
                    byte[] digest = md5(address + i);
                    // 对 digest 部分字节进行4次 hash 运算,得到四个不同的 long 型正整数
                    for (int h = 0; h < 4; h++) {
                        // h = 0 时,取 digest 中下标为 0 ~ 3 的4个字节进行位运算
                        // h = 1 时,取 digest 中下标为 4 ~ 7 的4个字节进行位运算
                        // h = 2, h = 3 时过程同上
                        long m = hash(digest, h);
                        // 将 hash 到 invoker 的映射关系存储到 virtualInvokers 中,
                        // virtualInvokers 中的元素要有序,因此选用 TreeMap 作为存储结构
                        virtualInvokers.put(m, invoker);
                    }
                }
            }
        }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44

    ConsistentHashSelector 进行了一些列的初始化方法,比如从配置中获取虚拟节点数以及参与 hash 计算的参数下标,默认情况下只使用第一个参数进行 hash。需要特别说明的是,ConsistentHashLoadBalance 的负载均衡逻辑只受参数值影响,具有相同参数值的请求将会被分配给同一个服务提供者。ConsistentHashLoadBalance 不 care 权重,因此使用时需要注意一下。

    在获取虚拟节点数和参数下标配置后,接下来要做到事情是计算虚拟节点 hash 值,并将虚拟节点存储到 TreeMap 中。到此,ConsistentHashSelector 初始化工作就完成了。再来看看 select 方法。

    public Invoker<T> select(Invocation invocation) {
        // 将参数转为 key
        String key = toKey(invocation.getArguments());
        // 对参数 key 进行 md5 运算
        byte[] digest = md5(key);
        // 取 digest 数组的前四个字节进行 hash 运算,再将 hash 值传给 selectForKey 方法,
        // 寻找合适的 Invoker
        return selectForKey(hash(digest, 0));
    }
    
    private Invoker<T> selectForKey(long hash) {
        // 到 TreeMap 中查找第一个节点值大于或等于当前 hash 的 Invoker
        Map.Entry<Long, Invoker<T>> entry = virtualInvokers.tailMap(hash, 
                                                                    true).firstEntry();
        // 如果 hash 大于 Invoker 在圆环上最大的位置,此时 entry = null,
        // 需要将 TreeMap 的头结点赋值给 entry
        if (entry == null) {
            entry = virtualInvokers.firstEntry();
        }
    
        // 返回 Invoker
        return entry.getValue();
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23

    选择的过程比较简单了。首先是对参数进行 md5 以及 hash 运算,得到一个 hash 值。然后再拿这个值到 TreeMap 中查找目标 Invoker 即可。

    RoundRobinLoadBalance

    先来了解一下什么是加权轮询。这里从最简单的轮询开始讲起,所谓轮询就是将请求轮流分配给一组服务器。举个例子,我们有三台服务器 A、B、C。我们将第一个请求分配给服务器 A,第二个请求分配给服务器 B,第三个请求分配给服务器 C,第四个请求再次分配给服务器 A。这个过程就叫做轮询。轮询是一种无状态负载均衡算法,实现简单,适用于每台服务器性能相近的场景下。显然,现实情况下,我们并不能保证每台服务器性能均相近。如果我们将等量的请求分配给性能较差的服务器,这显然是不合理的。因此,这个时候我们需要加权轮询算法,对轮询过程进行干预,使得性能好的服务器可以得到更多的请求,性能差的得到的少一些。每台服务器能够得到的请求数比例,接近或等于他们的权重比。比如服务器 A、B、C 权重比为 5:2:1。那么在8次请求中,服务器 A 将获取到其中的5次请求,服务器 B 获取到其中的2次请求,服务器 C 则获取到其中的1次请求。

    public class RoundRobinLoadBalance extends AbstractLoadBalance {
        public static final String NAME = "roundrobin";
        
        private static int RECYCLE_PERIOD = 60000;
        
        protected static class WeightedRoundRobin {
            // 服务提供者权重
            private int weight;
            // 当前权重
            private AtomicLong current = new AtomicLong(0);
            // 最后一次更新时间
            private long lastUpdate;
            
            public void setWeight(int weight) {
                this.weight = weight;
                // 初始情况下,current = 0
                current.set(0);
            }
            public long increaseCurrent() {
                // current = current + weight;
                return current.addAndGet(weight);
            }
            public void sel(int total) {
                // current = current - total;
                current.addAndGet(-1 * total);
            }
        }
    
        // 嵌套 Map 结构,存储的数据结构示例如下:
        // {
        //     "UserService.query": {
        //         "url1": WeightedRoundRobin@123, 
        //         "url2": WeightedRoundRobin@456, 
        //     },
        //     "UserService.update": {
        //         "url1": WeightedRoundRobin@123, 
        //         "url2": WeightedRoundRobin@456,
        //     }
        // }
        // 最外层为服务类名 + 方法名,第二层为 url 到 WeightedRoundRobin 的映射关系。
        // 这里我们可以将 url 看成是服务提供者的 id
        private ConcurrentMap<String, ConcurrentMap<String, WeightedRoundRobin>> 
            methodWeightMap = new ConcurrentHashMap<String, ConcurrentMap<String, 
            WeightedRoundRobin>>();
        
        // 原子更新锁
        private AtomicBoolean updateLock = new AtomicBoolean();
        
        @Override
        protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation 
                                          invocation) {
            String key = invokers.get(0).getUrl().getServiceKey() + "." + 
                invocation.getMethodName();
            // 获取 url 到 WeightedRoundRobin 映射表,如果为空,则创建一个新的
            ConcurrentMap<String, WeightedRoundRobin> map = methodWeightMap.get(key);
            if (map == null) {
                methodWeightMap.putIfAbsent(key, new ConcurrentHashMap<String, 
                                            WeightedRoundRobin>());
                map = methodWeightMap.get(key);
            }
            int totalWeight = 0;
            long maxCurrent = Long.MIN_VALUE;
            
            // 获取当前时间
            long now = System.currentTimeMillis();
            Invoker<T> selectedInvoker = null;
            WeightedRoundRobin selectedWRR = null;
    
            // 下面这个循环主要做了这样几件事情:
            //   1. 遍历 Invoker 列表,检测当前 Invoker 是否有
            //      对应的 WeightedRoundRobin,没有则创建
            //   2. 检测 Invoker 权重是否发生了变化,若变化了,
            //      则更新 WeightedRoundRobin 的 weight 字段
            //   3. 让 current 字段加上自身权重,等价于 current += weight
            //   4. 设置 lastUpdate 字段,即 lastUpdate = now
            //   5. 寻找具有最大 current 的 Invoker 以及 WeightedRoundRobin,
            //      暂存起来,留作后用
            //   6. 计算权重总和
            for (Invoker<T> invoker : invokers) {
                String identifyString = invoker.getUrl().toIdentityString();
                WeightedRoundRobin weightedRoundRobin = map.get(identifyString);
                int weight = getWeight(invoker, invocation);
                if (weight < 0) {
                    weight = 0;
                }
                
                // 检测当前 Invoker 是否有对应的 WeightedRoundRobin,没有则创建
                if (weightedRoundRobin == null) {
                    weightedRoundRobin = new WeightedRoundRobin();
                    // 设置 Invoker 权重
                    weightedRoundRobin.setWeight(weight);
                    // 存储 url 唯一标识 identifyString 到 weightedRoundRobin 的映射关系
                    map.putIfAbsent(identifyString, weightedRoundRobin);
                    weightedRoundRobin = map.get(identifyString);
                }
                // Invoker权重不等于WeightedRoundRobin中保存的权重,说明权重变化了,此时进行更新
                if (weight != weightedRoundRobin.getWeight()) {
                    weightedRoundRobin.setWeight(weight);
                }
                
                // 让 current 加上自身权重,等价于 current += weight
                long cur = weightedRoundRobin.increaseCurrent();
                // 设置 lastUpdate,表示近期更新过
                weightedRoundRobin.setLastUpdate(now);
                // 找出最大的 current 
                if (cur > maxCurrent) {
                    maxCurrent = cur;
                    // 将具有最大 current 权重的 Invoker 赋值给 selectedInvoker
                    selectedInvoker = invoker;
                    // 将 Invoker 对应的 weightedRoundRobin 赋值给 selectedWRR,留作后用
                    selectedWRR = weightedRoundRobin;
                }
                
                // 计算权重总和
                totalWeight += weight;
            }
    
            // 对  进行检查,过滤掉长时间未被更新的节点。
            // 该节点可能挂了,invokers 中不包含该节点,所以该节点的 lastUpdate 长时间无法被更新。
            // 若未更新时长超过阈值后,就会被移除掉,默认阈值为60秒。
            if (!updateLock.get() && invokers.size() != map.size()) {
                if (updateLock.compareAndSet(false, true)) {
                    try {
                        ConcurrentMap<String, WeightedRoundRobin> newMap = new 
                            ConcurrentHashMap<String, WeightedRoundRobin>();
                        // 拷贝
                        newMap.putAll(map);
                        
                        // 遍历修改,也就是移除过期记录
                        Iterator<Entry<String, WeightedRoundRobin>> it = 
                            newMap.entrySet().iterator();
                        while (it.hasNext()) {
                            Entry<String, WeightedRoundRobin> item = it.next();
                            if (now - item.getValue().getLastUpdate() > RECYCLE_PERIOD) 
                            {
                                it.remove();
                            }
                        }
                        
                        // 更新引用
                        methodWeightMap.put(key, newMap);
                    } finally {
                        updateLock.set(false);
                    }
                }
            }
    
            if (selectedInvoker != null) {
                // 让 current 减去权重总和,等价于 current -= totalWeight
                selectedWRR.sel(totalWeight);
                // 返回具有最大 current 的 Invoker
                return selectedInvoker;
            }
            
            // should not happen here
            return invokers.get(0);
        }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158

  • 相关阅读:
    西电系统分析与设计期末复习笔记
    开源项目ChatGPT-website再次更新,累计下载使用1600+
    Java 基础面试300题 (201-230)
    Feature and Instance Joint Selection: A Reinforcement Learning Perspective
    实现upt下客户端用tftp文件传输协议编写客户端发送下载文件
    分享3款ipad笔记工具,你们快来
    vue3-admin商品管理后台项目(图库模块开发)
    Dubbo传输层及交换层实现
    [产品体验] GPT4识图功能
    基于物联网的水质监测系统设计与实现:React前端、Node.js后端与TCP/IP协议的云平台集成(代码示例)
  • 原文地址:https://blog.csdn.net/xianghanscce/article/details/126169928