芯片设计验证社区·芯片爱好者聚集地·硬件相关讨论社区·数字verifier星球 |
---|
四社区联合力荐!近500篇数字IC精品文章收录! |
【数字IC精品文章收录】学习路线·基础知识·总线·脚本语言·芯片求职·EDA工具·低功耗设计Verilog·STA·设计·验证·FPGA·架构·AMBA·书籍 |
本系列旨在提供100%准确的数字IC设计/验证手撕代码环节的题目,原理,RTL设计,Testbench和参考仿真波形,每篇文章的内容都经过仿真核对。快速导航链接如下:
1.奇数分频
2.偶数分频
3.半整数分批
4.小数/分数分频
5.序列检测器
6.模三检测器
7.饮料机
8.异步复位,同步释放
9.边沿检测(上升沿,下降沿,双边沿)
10.全加器,半加器
11.格雷码转二进制
12.单bit跨时钟域(打两拍,边沿同步,脉冲同步)
13.奇偶校验
14.伪随机数生成器[线性反馈移位寄存器]
15.同步FIFO
16.无毛刺时钟切换电路
17.固定优先级仲裁器
18.轮询仲裁器
应当说,手撕代码环节是面试流程中既重要又简单的一个环节,跟软件类的岗位相比起来,数字IC的手撕代码题目固定,数量有限,属于整个面试中必得分的一个环节,在这个系列以外,笔者同样推荐数字IC求职者使用“HdlBits”进行代码的训练
链接如下
HDLBits — Verilog Practice
数字IC工程师在使用多主设备的总线过程中,需要考虑到不同主设备申请总线控制权的优先级问题,使用Verilog语言,完成轮询仲裁器,其中输入端为4bit的request,输出端为4bit的独热码grant(独热码意味着只存在4种grant的结果如下1000,0100,0010,0001),默认时总线优先级为A>B>C>D,其中的ABCD分别代表request[0],request[1],request[2],request[3],即从低到高依次排列,根据轮询算法,当其中的某一位被选中后,它在下一次request到来时它的优先级最低(3),而它左边的相邻位优先级变为最高(0),从左边相邻位至最高位,优先级依次降低,回旋至最低位,此为轮询算法,举例如下:
周期 | 请求情况(request) | 优先级排序 | 响应情况(grant) |
---|---|---|---|
1 | 1010 | 3210 | 0010(B) |
2 | 0001 | 1032 | 0001(A) |
3 | 1111 | 2103 | 0010(B) |
4 | 1011 | 1032 | 1000(D) |
该设计的输入输出端口如下
端口类型 | 名称 |
---|---|
input | clk |
input | rst_n |
input | [3:0]request |
output | [3:0]grant |
为了解释轮询仲裁其的设计思路,我们首先需要注意的是,针对于固定优先级的仲裁器,纯组合逻辑电路就可以完成功能,而针对于轮询仲裁器而言,我们需要引入时钟信号了,即时序逻辑电路的部分,这是因为,此时的优先级排序,不仅与初态有关,也与前一个状态的响应有关(前后状态相互影响,即时序电路,引入clk信号与dff)
其次,对于举例中,我们对于相应情况四位独热码的grant的分析,我们可以发现它和下一个周期优先级排序之间的关系:即若abcd为grant,c为1,即grant为0010,下次的优先级为1032,若b为1,即grant为0321。
在固定优先级仲裁器的第三种方法中,我们介绍了补码相与法,这其实是轮询仲裁器的一个特殊case,即不管grant实际输出为多少,前一个状态始终按照a为1来记录(1000),即下次的优先级为3210的顺序来进行。
我们在相与的过程中grant减去了0b0001,即“0b1000,左移一位的结果”。根据相同的原理,我们将前态的grant做记录,再左移,使用相似的补码相与法,是否可以得到所需值呢?答案是可以的,而这个操作的原理与前一篇文章中所说的借位相似,不再赘述。
module round_robin_arb(clk,rst_n,request,grant);
input clk;
input rst_n;
input [3:0] request;
output [3:0] grant;
reg [3:0] pre_state;
wire [3:0] pre_grant;
always@(posedge clk or negedge rst_n) begin
if(!rst_n)
pre_state <= 4'h1;
else
pre_state <= {pre_grant[2],pre_grant[1],pre_grant[0],pre_grant[3]};
end
assign pre_grant = {1'b1,request} & ~({1'b1,request} - 1'b1);
assign grant = {1'b1,request} & ~({1'b1,request} - pre_state);
endmodule
`timescale 1ns / 1ps
module round_robin_arb_tb();
reg clk;
reg rst_n;
reg [3:0] request;
wire [3:0] grant;
round_robin_arb u1(clk,rst_n,request,grant);
initial clk = 0;
always #5 clk = !clk;
initial begin
rst_n= 0;
request = 4'h0;
#19 rst_n = 1;
request = 4'b1101;
#10
request = 4'b0101;
#10
request = 4'b0010;
#10
request = 4'b0000;
#100;
$stop;
end
endmodule
仿真后的grant值为所需输出值,0001,0100,0010,0000符合下面的预期,证明设计正确。
复位后的周期 | request | 优先级排序 | 相应情况 |
---|---|---|---|
1 | 1101 | 3210 | 0001 |
2 | 0101 | 2103 | 0100 |
3 | 0010 | 0321 | 0010 |
4 | 0000 | 1032 | 0000 |