缓存雪崩指的是缓存同一时间大面积的失效,所以,后面的请求都会落到数据库上,造成数据库短时间内承受大量请求而崩掉。
简单的理解为:由于原有缓存失效,新缓存未到期间(例如:我们设置缓存时采用了相同的过期时间,在同一时刻出现大面积的缓存过期),所有原本应该访问缓存的请求都去查询数据库了,而对数据库CPU和内存造成巨大压力,严重的会造成数据库宕机,从而形成一系列连锁反应,造成整个系统崩溃。
解决办法
事前:尽量保证整个 Redis 集群的高可用性,发现机器宕机尽快补上,选择合适的内存淘汰策略。
事中:本地ehcache缓存 + hystrix限流&降级,避免MySQL崩掉, 通过加锁或者队列来控制读数据库写缓存的线程数量。比如对某个key只允许一个线程查询数据和写缓存,其他线程等待。
事后:利用 Redis 持久化机制保存的数据尽快恢复缓存
一般是黑客故意去请求缓存中不存在的数据,导致所有的请求都落到数据库上,造成数据库短时间内承受大量请求而崩掉。
简单的理解为:缓存穿透是指查询一个一定不存在的数据,由于缓存不命中,接着查询数据库也无法查询出结果,因此也不会写入到缓存中,这将会导致每个查询都会去请求数据库,造成缓存穿透。
解决办法
1、布隆过滤器
这是最常见的一种解决方法了,它是将所有可能存在的数据哈希到一个足够大的bitmap中,一个一定不存在的数据会被 这个bitmap拦截掉,从而避免了对底层存储系统的查询压 力。
对所有可能查询的参数以hash形式存储,在控制层先进行校验,不符合则丢弃,从而避免了对底层存储系统的查询压力;
布隆过滤器是引入了k(k>1)k(k>1)个相互独立的哈希函数,保证在给定的空间、误判率下,完成元素判重的过程。 它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难。
该算法的核心思想就是利用多个不同的Hash函数来解决“冲突”。Hash存在一个冲突(碰撞)的问题,用同一个Hash得到的两个URL的值有可能相同。为了减少冲突,我们可以多引入几个Hash,如果通过其中的一个Hash值我们得出某元素不在集合中,那么该元素肯定不在集合中。只有在所有的Hash函数告诉我们该元素在集合中时,才能确定该元素存在于集合中。这便是布隆过滤器的基本思想,一般用于在大数据量的集合中判定某元素是否存在。
2、缓存空对象
当存储层不命中后,即使返回的空对象也将其缓存起来,同时会设置一个过期时间,之后再访问这个数据将会从缓存中获取,保护了后端数据源;如果一个查询返回的数据为空(不管是数据不存 在,还是系统故障),我们仍然把这个空结果进行缓存,但它的过期时间会很短,最长不超过五分钟。
但是这种方法会存在两个问题:
1、如果空值能够被缓存起来,这就意味着缓存需要更多的空间存储更多的键,因为这当中可能会有很多的空值的键;
2、即使对空值设置了过期时间,还是会存在缓存层和存储层的数据会有一段时间窗口的不一致,这对于需要保持一致性的业务会有影响。
适用场景:缓存空对象适用于1、数据命中不高 2、数据频繁变化且实时性较高 ;而布隆过滤器适用1、数据命中不高 2、数据相对固定即实时性较低
维护成本:缓存空对象的方法适合1、代码维护简单 2、需要较多的缓存空间 3、数据会出现不一致的现象;布隆过滤器适合 1、代码维护较复杂 2、缓存空间要少一些。
缓存预热是指系统上线后,将相关的缓存数据直接加载到缓存系统。这样就可以避免在用户请求的时候,先查询数据库,然后再将数据缓存的问题。用户会直接查询事先被预热的缓存数据。
解决思路
1、直接写个缓存刷新页面,上线时手工操作下;
2、数据量不大,可以在项目启动的时候自动进行加载;
3、定时刷新缓存;
除了缓存服务器自带的缓存失效策略之外(Redis默认的有6中策略可供选择),我们还可以根据具体的业务需求进行自定义的缓存淘汰,常见的策略有两种:
(1)定时去清理过期的缓存;定时删除和惰性删除
定时删除:Redis默认是每隔 100ms 就随机抽取一些设置了过期时间的key,检查其是否过期,如果过期就删 除。注意这里是随机抽取的。为什么要随机呢?你想一想假如 Redis 存了几十万个 key ,每隔100ms就遍历所 有的设置过期时间的 key 的话,就会给 CPU 带来很大的负载!
惰性删除 :定期删除可能会导致很多过期 key 到了时间并没有被删除掉。所以就有了惰性删除。它是指某个键值过期后,此键值不会马上被删除,而是等到下次被使用的时候,才会被检查到过期,此时才能得到删除,惰性删除的缺点很明显是浪费内存。 除非你的系统去查一下那个 key,才会被Redis给删除掉。这就是所谓的惰性删除!
(2)当有用户请求过来时,再判断这个请求所用到的缓存是否过期,过期的话就去底层系统得到新数据并更新缓存。 两者各有优劣,第一种的缺点是维护大量缓存的key是比较麻烦的,第二种的缺点就是每次用户请求过来都要判断缓存失效,逻辑相对比较复杂!具体用哪种方案,大家可以根据自己的应用场景来权衡。
缓存击穿,是指一个key热点,在不停的扛着大并发,大并发集中对这一个点进行访问,当这个key在失效的瞬间,持续的大并发就穿破缓存,直接请求数据库,就像在一个屏障上凿开了一个洞。
比如常见的电商项目中,某些货物成为“爆款”了,可以对一些主打商品的缓存直接设置为永不过期。即便某些商品自己发酵成了爆款,也是直接设为永不过期就好了。mutex key互斥锁基本上是用不上的,有个词叫做大道至简。
当访问量剧增、服务出现问题(如响应时间慢或不响应)或非核心服务影响到核心流程的性能时,仍然需要保证服务还是可用的,即使是有损服务。系统可以根据一些关键数据进行自动降级,也可以配置开关实现人工降级。
降级的最终目的是保证核心服务可用,即使是有损的。而且有些服务是无法降级的(如加入购物车、结算)。 以参考日志级别设置预案:
(1)一般:比如有些服务偶尔因为网络抖动或者服务正在上线而超时,可以自动降级;
(2)警告:有些服务在一段时间内成功率有波动(如在95~100%之间),可以自动降级或人工降级,并发送告警;
(3)错误:比如可用率低于90%,或者数据库连接池被打爆了,或者访问量突然猛增到系统能承受的最大阀值,此时可以根据情况自动降级或者人工降级;
(4)严重错误:比如因为特殊原因数据错误了,此时需要紧急人工降级。
服务降级的目的,是为了防止Redis服务故障,导致数据库跟着一起发生雪崩问题。因此,对于不重要的缓存数据,可以采取服务降级策略,例如一个比较常见的做法就是,Redis出现问题,不去数据库查询,而是直接返回默认值给用户。